
User Guide for microdata.no

Written by Trond Pedersen, Sikt, Norway

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Content list

Content list 2

About the user interface 5
1.1 The command window 7
1.2 Variables and variable definitions 9
1.3 The Command field 15
1.4 Useful Commands 16
1.5 The script window 17
1.5.1 Create a script 17
1.5.2 Save command window work sessions as a script 17
1.5.3 Run a script 18
1.5.4 Run parts of a script 19
1.5.5 Script editor advantages 23
1.5.6 Organization of scripts 24
1.5.7 Troubleshooting using scripts 25

Creating and changing datasets 26
2.1 Connect to data bank 26
2.2 Creating a dataset 27
2.3 Retrieving variables into a dataset 27
2.3.1 Datasets containing cross-sectional data 28
2.3.2 Datasets containing event information 30
2.3.3 Cross-sectional vs. event-based datasets 31
2.4 Datasets containing regular time measurements (panel data) 32
2.5 How to navigate between datasets 33
2.6 Population filtering 34
2.7 Removing variables from datasets 35
2.8 How to aggregate and link datasets 35
2.9 Restructuring datasets 37
2.9.1 Restructuring from cross-sectional data to panel data 37
2.9.2 Restructuring from panel data to cross-sectional data 39
2.10 Examples: Creating and revising a dataset 41
2.11 Examples: How to link data with unit levels other than individual level 42
2.12 Examples: How to restructure datasets from cross-sectional to panel data format (from
"wide" to "long") 48

2

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

2.13 Examples: How to restructure datasets from panel data to cross-sectional format (from
"long" to "wide") 50

Variable adaptations 52
3.1 Creating new variables and recoding: generate/replace 52
3.2 Variable recoding: recode 55
3.2.1 Automatic recoding by uploading delimited files 56
3.3 Use of functions 64
3.4 How to generate time-aggregated values - collapse 65
3.5 Renaming variables 67
3.6 Using labels 67
3.7 Changing value format from alphanumerical (text) into numerical 68
3.8 Example 69

Descriptive variable statistics 70
4.1 Tabulate - frequency tables 71
4.1.1 One-way frequency tables 72
4.1.2 Multi-dimensional frequency tables 73
4.1.3 Frequency tables using percentages 74
4.1.4 Frequency tables and category labels 75
4.1.5 Frequency tables and missing values 76
4.1.6 Frequency table filtering 77
4.1.7 Volume tables 79
4.2 Summarize and boxplot - metrical statistics 80
4.3 Piecharts 83
4.4 Histogram - graphical frequency presentation 84
4.5 Barcharts 88
4.6 Hexbin - anonymized scatterplot 89
4.7 Sankey - transition diagrams 91
4.8 Examples 94
4.8.1 Tabulate 94
4.8.2 Summarize and boxplot 95
4.8.3 Histogram and barchart 96
4.8.4 Piechart and hexbin-plot 97
4.8.5 Sankey-diagram 98

Advanced analysis 100
5.1 Correlate - correlation measures 100
5.2 Anova 101
5.3 Normal test 102
5.4 Regress - ordinary least squares estimation 103

3

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.4.1 Factor variables 105
5.4.2 Model diagnostics 108
5.4.3 Cluster and robust estimation 110
5.4.4 Prediction and residual values 111
5.5 IV-regression - linear regression analysis with instrument variables 112
5.5.1 Factor variables 113
5.5.2 Model diagnostics 113
5.5.3 Cluster and robust estimation 113
5.5.4 Prediction and residual values 113
5.6 Oaxaca - ordinary least squares estimation with decomposition of group specific effects
114
5.7 Logit and probit - logistic regression analysis 117
5.7.1 Factor variables 119
5.7.2 Marginal effects 119
5.7.3 Cluster and robust estimation 120
5.7.4 Prediction and residual values 120
5.8 Mlogit - multinomial logistic regression analysis 122
5.8.1 Factor variables 123
5.8.2 Marginal effects 123
5.8.3 Cluster and robust estimation 123
5.8.4 Prediction and residual values 123
5.9 Regress-panel - panel data regression analysis 124
5.9.1 Factor variables 129
5.9.2 Model diagnostics 129
5.9.3 Cluster and robust estimation 130
5.9.4 Prediction and residual values 130
5.10 Example 131

Appendix A: Command overview 134

Appendix B: Function overview 137
Misc. mathematical functions 137
Row calculations (based on two or more variables) 140
String functions 142
Sysmiss 144
Density functions 144
Date functions 153

Appendix C: Confidentiality in microdata.no 156

4

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

1.About the user interface
Microdata.no is a web-based analysis system that uses a command language simular to Stata .1

It is recommended to use browsers such as Chrome and Firefox for the best user experience.
Internet Explorer may cause errors such as the screen becoming blank and / or inability to log
in, and is therefore not recommended.

Login to microdata.no is done via the following website: https://microdata.no/en/

1 The commands are implemented using Python and Pandas, and the syntax is similar to Stata in order to
make it user friendly.

5

https://microdata.no/en/

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

What you see after login is a website consisting of an analysis area, i.e. the command window,
cf. section 1.1. This is used to explore variables and test commands:

By clicking on variables one can get acquainted with the content, value format, validity period,
etc. Through commands that are run separately, variables can be imported into datasets for
further processing and analysis. In addition to descriptive statistical possibilities, one can also
perform advanced statistical operations such as regression analyses, etc. See sections 1.1-1.4
for more information on how to work in the script window.

After exploring and familiarizing with the data you want to use in analyses, it is strongly
recommended to use the script functionality to systematize the analysis work. This is
especially true if one intends to carry out a more comprehensive analysis (beyond basic
descriptive statistics for a few variables). Using scripts has many advantages over working
exclusively in the command window through the use of single commands:

a) One can construct command sequences to be run in one operation. The results of script
executions are displayed continuously as commands are run and the execution is
stopped if errors are detected (syntax or logical errors)

b) Command sequences can be edited and rerun
c) Much easier to identify errors in a long chain of command sequences
d) Works as documentation / log of work
e) Various work sessions can be saved with their separate names for later reuse
f) The contents of a script can be copied into separate (external) documents for extra

backup

Work already performed in the command window can easily be transferred into a script for
further editing. This can be done in three ways:

● In the script window there is a menu button at the top left. There you can select “Nytt
skript med historikk fra kommandolinjen” ("New script with command line history").
Remember to enter a name for the script in the line above the script window. The script
will then be saved with this name.

● Use the command history in the command window. This returns a chronological list of
all commands run, which can be copied into the script window by clicking on the copy
button that will appear when holding the mouse cursor over, and then using the <ctrl> +
<c> keyboard combination. Remember to create a name for the script also in this case.

● In the command window, you can type the save command followed by an optional name
that you use on the script. The name must have quotation marks around, for example
save ‘Analysis of the unemployed’. With this procedure, you do not need to
name the script in the script window afterwards.

For more information on using scripts, see section 1.5.

6

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

1.1 The command window

The command window consists of the following:

- Work area (largest space at the far right)
- Overview of available variables (area at the bottom left - this space is blank until you

have connected to a data bank by using the require command, ref. section 2.1)
- Overview of variables imported into own datasets (area at the top left)
- Command line (bottom of work area)

Custom datasets are built up by importing, processing and developing new variables based on
variables from the data bank. Datasets are stored in the user's command window and do not
disappear without the user deleting them. See section 2 on how to create datasets and import
variables.

7

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

After the command window has been filled up with imported variables, it may look like this:

In the example above, a dataset named “demografidata” ("demographic data") has been
created, containing 8 variables and 9 903 456 units (individuals). Amongst the variables, you will
find the personal identification key PERSONID_1. This is a system variable that is always
included with the import of variables. It specifies a unique person identifier that is used as a key
for linking variables together on individual level. The system performs an automatic merging of
variables according to the "left join" principle, so if you are only interested in using data on
individual cross-sectional level, then you do not need to deal with this variable .2

The work area displays a log containing the commands that have been executed and the
resulting response, be it tables, figures and other feedback.

2 The PERSONID_1 identification key only needs to be specified explicitly in cases where the collapse
command is used to aggregate information from a sub-individual level up to the individual level. A typical
example is when you use the import-event command to create a dataset with "events" as unit type
(see section 2.3.2). In practice, this data set, which can contain several value measurements per
individual, is represented by separate data records that point to the different values (all value
measurements between two dates are imported for a given variable), and cannot be easily linked to other
data sets. In order to be able to link data based on event information (import-event) with ordinary
individual-level datasets, one must use the collapse command to aggregate the data up to the
individual level and then use the merge command (see sections 2.8 and 3.4). Another example of
sub-individual data is so-called course variables (data on ongoing studies) which can contain several
value measurements per individual even at cross-sectional level (import), since it is possible to take
several studies at the same time.

8

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

To indicate that the user is now working on the dataset “demografidata>>” ("demographic
data>>"), “demografidata>>” is now displayed instead of ">>" at the bottom (command line). If
multiple datasets are created, the window at the top left will contain several variable views
correspondingly. To work on different datasets, one can switch between them by using the
command use <dataset>. The leading text in the command line will indicate what dataset
the user has moved to.

1.2 Variables and variable definitions
The microdata.no analysis system has a wide range of demographic, educational, economic,
employment and social security variables in the database. The variables are comprehensively
described in the variable overview found on the opening page (https://microdata.no/discovery):

9

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

The variable list shows an overview of all variables in the database (over 300 in Statistics
Norway's database per 1/1 2022), and you can use search functionality to more easily find
variables you are looking for.

By clicking on “Vis endringslogg” ("Show change log") under the name of the database, you also
get an overview of the different versions of the database, and what has been changed. By
clicking on the version names, you will come to a new page that shows all the variables for this
version.

By clicking on a variable in the variable list, you get definitions, code lists, change history and
other key information related to the specific variable:

10

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Note that variable information is currently only available in Norwegian.

Be aware that the code list for a given variable changes over time. This must be taken into
account if you work with longer time series that extend back in time. It is the current code list
that applies for the specific time periods. Especially municipal codes, education codes and
business codes have relatively frequent changes in the code lists. By clicking on the points in
front of the times that indicate the start of a new code version, a current code list for the current
time period is displayed. If you click on the indication of changes, you get an overview of which
changes have been made for the same time period:

11

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

As the illustration below shows, a complete variable overview is also found at the bottom left of
the command window. Like the variable list found through the main login site, you may filter the
variable list by entering parts of a variable name in the search field, and the filter works both
against variable description and the name itself. In this way, it becomes easier to find the
variable in question.

All variables are displayed with an associated timeline that marks the validity period(s), i.e.
which time span is covered. Variables in microdata.no are three-dimensional - they contain time.
By "clicking" on variables in the list, descriptive statistics and other information such as variable
type can be retrieved.

12

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

In the example below, this is exemplified for the variable “Sivilstand” ("Marital status"). The
variable is presented in a separate movable and resizable window. It provides detailed
information about the variable:

- Key information: Variable name, variable label, variable description, variable type

- Detailed interactive timeline that allows for studies of changes in coding over time:
Changes in the coding are displayed through different colors illustrating the time periods
to which they apply. Clicking on the different fields in the timeline will bring up a list of the
codes that were valid during the current period. In the example, the field that applies to
August 1, 1993 - December 31, 2016 is marked, and a list of 10 categories then appears

- Information about changes: In the example, “4 endringer” ("4 revisions") is shown. This is
the number of revisions compared to the previous time period. By clicking on "4
endringer", a list of the new codes will appear

13

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

For variables imported to the user's dataset ("demografidata"), a slightly different type of
information appears that may be useful when dealing with many different variables. This
information adjusts continuously as changes are made to the variables, and appears in separate
pop-ups when clicking on variables in the list of your current dataset:

- Formula: At the top of the window, a "creation history" is presented. This is a tool for
insight on how a variable has been created or re-encoded

- Key information: Variable type and number of units with value for missing data (sysmiss)

- Frequency distribution and simple statistics: For categorical variables, frequency
distribution is displayed, while for continuous variables, a standard boxplot is displayed
with a box representing the two middle quartiles plus average and minimum/maximum
value (so-called whiskers). If values become unreadable due to overlap, the pop-up
window can be expanded.

14

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

1.3 The Command field
The command field is a central part of the user interface, where commands may be entered for
execution. This includes importing/retrieving variables, creating descriptive variable statistics,
commands for processing and encoding variables, administrative help commands (help,
history, clear etc) or analysis. See Appendix A for a complete list of available commands.

The microdata.no analysis system has a built-in self-filling solution that suggests relevant
commands based on what is typed. In most cases, it is sufficient to enter a few characters
before the system is able to suggest the desired command. By pressing the <tab> key on the
keyboard, the command is inserted correctly.

Most commands assume that additional information is entered, and self-filling also works in
such contexts. The command import needs additional information on variable name and
measurement time in order to be executed. If you want to import the variable kjønn (gender),
you can start by entering the letter "k". This will result in a list of all variables with the letter "k" in
the name - in practice there will be many to choose from. When typing the next letter "j", the
system will list all variable names containing the combination "kj". After entering "ø", the letter
combination will be sufficiently unique for the system to reduce the number of alternatives into a
few, and the user can select the correct variable with the arrow keys on the keyboard and then

15

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

use the <tab> key. Following the variable selection, a measurement date need to be specified
given that the variable does not contain fixed information such as "gender". The default value for
the system is the last used date. If this is ok, use the <tab> key. If not, enter an optional new
date instead. The system will also suggest relevant options at the end. For import, the option
as may be used. This may be used to create an alias for the particular variable. The register
variables in the database often have inconvenient and long names that may be renamed using
the as option for more understandable/readable analysis and statistics outputs/prints.

1.4 Useful Commands
If you are wondering what kind of commands to use, you can start with help. This will present
a list of all available commands. For those familiar with the analysis software Stata, most of the
commands will be recognisable. The microdata.no analysis system uses a Stata-like syntax,
which also means that commands are written in English.

If you want full information about a particular command, this can be solved by entering help
followed by the command name, e.g. help import. An explanation with examples of use is
then displayed. A complete list of commands and functions is shown in Appendices A and B.

Another useful command is history. It will list all commands that have been used in a
session. This list can be copied into the system's script editor for an automatic execution of all
the commands, cf. section 1.5, or into a private document.

The command clear may be used to delete all content in the workspace if you want to start all
over again. This should therefore be used with caution!

An alternative to clear may be to use the known key combination <Ctrl> + <Z>. This is a
widely used “regret-functionality”, where the last operation is made undone (takes you one step
back). This may be done unlimited amount of steps, until only an empty work area remains. The
key combination <Ctrl> + <Y> may be used to redo the last "undo". Apple users may use the
combinations <Cmd> + <Z> and <Cmd> + <Y>.

A useful tool when using the command field is to use the <arrow-key up> on the keyboard. This
will scroll you through all previous commands used in chronological order until you find the one
you want to reuse. This will save you the work of having to manually enter the same command
syntax several times. Often there is a need to run different variants of the same command
syntax (e.g. with slightly different variables or parameters). In such cases, an already used
command may be selected from the list to be rerun after some small adjustments.

16

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

1.5 The script window
The script editor is located to the left of the script window, allowing users to enter sequences of
commands that can be run together as a script. The results of the run are shown in the right
area of the script window when using the “Kjør” (“Run”) button.

1.5.1 Create a script
Scripts can be created in the following ways (can be combined):

● Enter manually, line by line
● Copy commands from the command window (use the history command and copy the

commands you want by selecting them and using ctrl + c)
● Paste a finished script from different sources (remember to convert to plain text format

first - do not paste scripts that come from formatted formats such as Word)
● Import / retrieve your entire work session from the command window (see section 1.5.2)

1.5.2 Save command window work sessions as a script
Work already performed in the command window can easily be transferred into a script for
further editing. This can be done in four ways:

17

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

● In the script window there is a menu button at the top left. There you can select “Nytt
skript med historikk fra kommandolinjen” ("New script with command line history").
Remember to enter a name for the script in the line above the script window. The script
will then be saved with this name.

● Use the command history in the command window. This returns a chronological list of
all commands run, which can be copied into the script window by clicking on the copy
button that will appear when holding the mouse cursor over, and then using the <ctrl> +
<c> keyboard combination. Remember to create a name for the script also in this case.

● In the command window, you can type the save command followed by an optional name
that you use on the script. The name must have quotation marks around (both single
and double quotation marks are allowed), for example save ‘Analysis of the
unemployed’. With this procedure, you do not need to name the script in the script
window afterwards.

● Instead of using save, you may use the edit command. This is similar to save in that
your work in the command window is automatically entered into the existing / active
script in the script window. But be aware that the existing script is overwritten with the
new content. This command is useful when you want to run a script where you send the
result to the command window (see section 1.5.3), and then test it out and add new
commands there. Edit then makes sure that your new commands are easily added to
the script you ran.

1.5.3 Run a script
You have two options when you are ready to run the script:

● At the bottom right there are two buttons, where one, "Kjør" (“Run”), runs through the
script on the right side of the script area (result area)

● The second button “Send til kommandolinjen” ("Send to command line") sends all the
commands to the command window and executes them there. When the run is
complete, you are automatically sent to this window. Note that whatever content you
have in the command window will be replaced by the result of the new script run, so
remember to save your work in the command window in the form of a script before
running the new one.

All command lines in a script are executed sequentially, and the result will continuously be
displayed while running. In case of any errors in the syntax, the execution will be stopped where
the error is located. In such cases, the error may be corrected and the script rerun.

Note that the system "remembers" previously run command sequences. So when executing
exactly the same command script over again without changes, it will only take a few seconds to
retrieve the result of the run. This principle also applies if preliminary parts of a script have been

18

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

run earlier, where only the last part has been edited. Then the system will "remember" what has
previously been run and only use resources to work its way through the part of the script that is
changed.

1.5.4 Run parts of a script
It is possible to execute only parts of a script. This may be done in three ways:

A) Mark out individual lines by defining them as help-text/comments

○ Enter the characters "//" in front of the relevant lines you want to keep out. The
system interprets everything that comes behind "//" as help-text/comments, and it
will therefore be skipped from the execution

19

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

○ In the next steps, the help-text marking may be removed gradually for more and
more command lines until the entire script is completely executed. Note that the
command lines previously executed are kept in the memory and will not be rerun.
Only those lines where the "//" characters are removed will actually be rerun

○ You may also automatically add “//” in front of several lines by marking them and
using the hotkey combination alt + c. By repeating the procedure for the exact
same lines, all “//” signs will be removed.

20

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

B) Selecting larger parts of a script by defining blocks as help-text

○ Enter the keywords textblock and endblock before and after a block of
command respectively. Everything in between will then be kept out of the
execution. Note that the purpose of textblock and endblock is to enter
comments for analyses performed in the command window. The command
window can therefore be filled up with the command lines that were defined as
comments in the script, and it may look a bit messy. But as fewer and fewer lines
are kept out from the execution, the command window will gradually contain less
of this

○ The advantage of textblock and endblock is that it is less time consuming if
the number of lines to be marked out is extensive

○ Just like using the characters "//", the system will "remember" what has been run
previously and will jump right down to the part of the script where the "text block
mark" has been removed. Note that this does not apply when the
textblock-functionality has been used on the preliminary parts of the script

Example: Using textblocks in scripts

21

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

C) Click on a line number in your script and then press “Kjør” or “Send til kommandolinjen”.

This will run through all the lines in your script until the line that was marked, and stop
the execution there. You may use this procedure to run through gradually more and
more of your script if you are not ready to run through it completely.

Example: Click on line number to run through all lines until this point (and not the
complete script)

22

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

1.5.5 Script editor advantages
There are many advantages of actively using the script editor to execute sequences of
commands:

● Works as a work backup

○ When naming a script, it is stored in the system and may be retrieved again later

○ Scripts may be saved as text format by copying over to a text document
externally. This serves as extra security. If the work is lost for some reason, it
may be retrieved from your external document file and pasted into the editor for
rerunning. In this way all the analysis work will be recreated as it was originally.
Note: External script storage should be done in plain text format of the type ".txt"
through applications such as Notepad etc. More advanced word processing tools
such as Word and Google Doc perform text formatting that allows some
characters to be altered, e.g. singular quotation marks. When this is then copied
and pasted back into the microdata.no script editor, the characters may not be
recognized and the system could actually shut down as a consequence.

● Scripts are a way of systematizing and recollecting your work. The order of command
sequences can be adjusted, and other adjustments may also be performed, such as
adding comments/help-text (see section 1.5.4) which makes it easier to recollect and
easier for third-parties to understand what the purpose of the various operations is.

● Script works as a log of work (can be added to analysis reports to document your work)

● It is easy to make adjustments on an analysis. If there is a need to do things a little
differently, the script may be edited and rerun. Edited scripts may be stored with new
names. This makes it easier to document and compare results

● Using the scripting capability actively makes it easier to collaborate with others. Scripts
may be sent in text format to other colleagues, e.g. via email

● Scripts may be edited in the same way as in Google Doc or other word processing
programs such as Word: It is possible to edit by cutting, copying and pasting text, as well
as marking text-blocks and moving them around as needed

● The system "remembers" previously run scripts given that they are unaltered. It will only
take a few seconds to reproduce a previously run result. Note that if some parts in a
script are altered and rerun, the system will treat it as a completely new set of
commands, and it will take much longer time to execute it. If, on the other hand, there is

23

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

a need to adjust command lines only at the end of a script, the system will jump right
down and only use resources to process this part. The rest are retrieved from the
memory.

1.5.6 Organization of scripts
The image below shows the various possibilities for organizing scripts (programs). The menu
button at the top left of the script window allows you to create a completely new (empty)
program, or to retrieve all commands used in the active work window: “Nytt program med
historikk fra kommandolinjen” ("New program with command line history").

The contents of active scripts are stored continuously with a default name (similar to Google
Doc). By entering a custom title at the top of the script, where it says "Untitled program", the
default name will be replaced by this. Any work done on the script will then automatically be
saved with this name.

It is possible to store as many scripts as you wish by naming them with new names. The system
will also periodically store the current (active) script at regular intervals (backup).

At the bottom of the program menu there are examples of command sequences for different
types of tasks. They can be used as active scripts that can be run directly. They can also be
edited and saved with new names (can be used as a template).

24

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

1.5.7 Troubleshooting using scripts
It is not easy to avoid errors in the command syntax when running scripts. This can be
misspellings or logical errors that cannot be executed. The system will then stop running the
script where the error is located and mark the appropriate line. An error message will also be
provided.

What to do:
i) Check what may have gone wrong. Pay special attention to the line marked with

errors. Run the part of the script that do not contain errors, i.e. until the line
containing the error (see section 1.5.4 on how to run portions of a script)

ii) Double check whether the syntax is correct, that the variable name is correctly
spelled, that the date of import is valid (a variable may not have data for the
current measurement time)

iii) Use statistical tools like the commands tabulate or summarize. See if there
are any errors in the way the relevant variables are encoded. Also check if the
value format is correct (numerical or alphanumerical)

iv) Dummy variables or categorical variables where at least one of the categories
has few observations can lead to undesirable analysis results:

■ When performing regression analyses, only units with valid values across
all the included variables will be analyzed

■ Even if all dummy variables to be used in a regression analysis initially
have sufficient numbers of observations for both values 0 and 1, this may
not be the case if a number of units are kept out of the regression
analysis due to missing values

■ The analysis may be stopped and an error message given. A solution can
be to recategorize: Recode the variables in question in order to transfer
units from the most populated categories into those with the least number
of observations. Another solution may be to drop the problematic
variables from the analysis

25

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

2.Creating and changing datasets
Data analyses in microdata.no require that users start by connecting to a data bank, then
creating an empty dataset in order to import the required variables. Variable imports are done
through the use of import-commands (see sections 2.3.1, 2.3.2 and 2.4).

If you need to adjust the population or remove variables, the commands drop or keep are
relevant to use (see sections 2.6 and 2.7). Variables for deletion may be specified in the
command expression. If no variable is specified, whole records are deleted conditioned on the
if-expression followed.

2.1 Connect to data bank
When you log in to microdata.no for the first time, or create a completely new work session, the
contents of the command window will be empty. In order to create datasets, it is necessary to
connect to available data banks. Normally, it is sufficient to connect to the data bank containing
a substantial collection of register data offered by Statistics Norway. Microdata.no will in the
near future offer data banks containing data also from other data sources.

It is optional which version of the data bank to connect to. The newest version is recommended,
as it contains the newest variables and updates. By connecting to earlier versions, it is possible
to compare possible effects caused by version differences. When new data measurements are
added to an existing variable, this may inflict upon prior sequences of events. Therefore, new
data bank versions will always be created in such cases.

In the variable overview found on the main web page, you will find a list of all available data
banks and data bank versions, including all variables contained. Section 1.2 describes this in
more detail.

Command for connection to data bank:

require <databank:version> as <alias>

Example:

require no.ssb.fdb:15 as db

26

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

2.2 Creating a dataset
To be able to work with data and analysis in microdata.no, one must always start by creating a
dataset. This is done by typing the following command in the command field:

create-dataset <dataset>

Example:

create-dataset mydataset

In many cases it is sufficient to create one dataset only, but in principle one can create as many
as possible. An example where it is applicable to create several datasets is when working with
variables organized differently (having different unit levels). In addition to a dataset on individual
level (one record per individual), a user may also need to analyze other datasets organized with
events as units (several records per individual).

2.3 Retrieving variables into a dataset
The next step is to fill your dataset with relevant variables.

All underlying variables in microdata.no are basically organized in the same way; as events:

individual id-number x value x start date x stop date

Microdata.no further distinguishes between four types of variables:

1) Longitudinal variables with sequences of events (each observation represents a state
change, i.e. the variable changes value, with varying start and stop dates)

2) Fixed variables with only one observation per unit (fixed information such as gender,
date of birth, country of birth)

3) Cross-sectional variables measured at fixed times (this is mainly variables used for
statistical purposes, where start date = stop date and only the value at this particular
time in question is known)

4) Accumulated variables - mainly economical data on yearly income, wealth etc

27

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Datasets are built by using the command import, with a measurement date usually specified
(the exception is variables with constant values such as gender).

Section 2.3.1 shows in detail how to use the command import to import variables into a
dataset in the case with individuals as unit level. Section 2.3.2 shows alternative imports of
variables with events as units (persons are represented by several observations over time,
depending on the number of events that have occurred). In this case, the relevant command to
use is import-event.

2.3.1 Datasets containing cross-sectional data
The command import is used for imports of the following types of information (four
temporality types):

● Fixed information (e.g. gender, birthdate, birth country)
● Longitudinal information (custom extractions from event based variables)
● Cross-sectional information on regularly predetermined measurement dates
● Accumulated information (mainly yearly economical measures like income, wealth etc)

The name of the variable to import into your dataset is required, in addition to the measurement
date. When you are working in the command window, the system suggests relevant variables
and dates through a self-filling feature that minimizes the chance of writing errors.

For each time the import is run, a new variable will be added to the work dataset
(automatically linked with the respective individuals). The resulting dataset will consist of one
observation per unit (individual), with an optional number of variables.

When importing fixed (constant value) variables, the measurement date is excluded from the
expression:

import <variable> as <alias>

However, all other variables require a measurement date on the format YYYY-MM-DD:

import <variable> <measurement date> as <alias>

For cross-sectional variables, the regularly predetermined measurement dates must be used
since the values in only will apply to these particular dates (one does not know the actual
change dates for such variables). If you are working in the command window, the microdata.no

28

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

analysis system will in such cases suggest the relevant statistics dates through the self-filling
function in order to help the user as much as possible. When importing longitudinal data on
custom dates, the last used date is proposed. For variables with accumulated measures, it is
the annual value for the year in question that is imported, therefore the specific date does not
matter as long as the correct year is used (January 1. or December 31. the particular year, the
result will be the same).

Example: Data matrix using import (4 variables)

ID Variable 1 Variable 2 Variable 3 Variable 4

123456 1 200000 0301 1

135791 1 410000 0301 1

147036 2 515000 1201 sysmiss

159371 2 309011 1101 sysmiss

160505 2 357000 1101 1

173951 2 399000 0301 3

Important:

The command import performs practically two operations:

a) Retrieves values for a given variable
b) Links the variable values onto the existing dataset through a so-called "left-join"

merging (by default)

Linking/merging through “left-join” means that only values for units (individuals) in the existing
dataset are imported. Therefore, it is important to start by importing a variable with a limited
number of missing values, such as gender, country background or date of birth. On the other
hand, if the first variable imported into your dataset is a variable that indicates sickness
absence on a given date, your population will be defined by these individuals with a valid
sickness absence measurement and it will not be possible to retrieve information about other
people in later stages. In other words, the first import-step will define the population of the
current dataset.

Alternative import solution: The import command has an option, outer_join, which can be used
if you want to import a new variable using the so-called "outer join" approach. This means that
new units (individuals) that do not already exist in your dataset are also added, provided that

29

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

they have a valid value for the new variable. Your population will then increase in size
depending on how many new units have a valid value for the new variable. This can be useful
if you want to create a population that covers all units (individuals) that have had a value /
status over a period of time, and not just reconnect information only to those that exist in the
population defined by variable number 1. Example: import salary19, outer_join

Note that the sample population may be trimmed along the way in the process of building up a
dataset, through the commands drop and keep, cf. section 2.6.

Units/individuals in an existing dataset that have a missing value for an imported variable will
still be included in the sample, but will have a so-called sysmiss-values for the spesific
variable (see section 2.6).

If you have a clear idea of which units (individuals) should be included in an analysis
population, you may want to trim the population as early as possible. This could provide
significant improvements in how fast the system works.

If the first variable imported into your dataset is universal, e.g. "gender", your dataset will
consist of most of the individuals from the total database, including people who are dead,
emigrated or unborn at the specific time measurement. This can be solved by first importing
the variable BEFOLKNING_STATUSKODE measured at the corresponding measurement date,
and then keeping all individuals who take the value '1' (= resident in Norway). Example:

require no.ssb.fdb:12 as db
create-dataset demographics
import db/BEFOLKNING_KJOENN as gender
import db/BEFOLKNING_STATUSKODE 2015-01-01 as regstat15
keep if regstat15 == '1'

2.3.2 Datasets containing event information
In addition to retrieving information measured at selected dates, users may also make
calculations based on events over time. E.g. one may be interested in finding individuals who
got married, became unemployed, or who were unemployed for over 6 months during a given
time-span. The command import-event can be used for this purpose. It performs a variable
import where all records (= events) per unit (= individual) are retrieved over a specified time
span. In addition to the variable name, two time-points are required in the expression: Start-

30

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

and stop-date. All events that have happened between the two dates will be retrieved to your
dataset, i.e. all events that overlap the time-interval. The dataset will contain a varying number
of records per unit (individual) depending on how frequent change-events have occured.

Note that only one event-based variable can be imported into a given dataset, and that such a
dataset can not contain other variables. If there is a need to work on several event-based
variables, one dataset needs to be created for each variable. Syntax expression for import of
event-based information:

create-dataset <dataset>
import-event <variable> <start date> to <stop date> as <alias>

Example: Data matrix using import-event (time interval: 2000-01-01 - 2003-01-01)1

ID Start Stop Variable

123456 2000-01-01 2000-05-30 1

123456 2000-05-31 2001-12-31 4

123456 2002-01-01 2003-08-15 2

135791 2000-04-10 2002-03-03 2

135791 2002-03-04 2002-11-11 3

147036 2002-02-28 2004-07-16 1

1 Note: All events overlapping the time-period 2000-01-01 - 2003-01-01 are retrieved

2.3.3 Cross-sectional vs. event-based datasets
Unlike cross-sectional datasets that are built through the command import, this is not
possible through the command import-event. Data extraction at the event level will always
result in different numbers of records per individual, and it will make little sense to link such
extracts into a common data set. A new dataset must therefore be created for each event-based
data extraction (see section 2.3.2).

The purpose of event-organized data extraction is, as mentioned, to make calculations based
on events over time through the command collapse. This will transform the event-based
dataset into a unit-level data set (one record per individual) with the aggregated statistical
measure being the new variable value (measured over the specified time span), allowing the
variable to be linked with cross-sectional datasets for further analysis.

31

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Section 2.8 describes the method for linking datasets together.

2.4 Datasets containing regular time measurements (panel data)
To be able to perform advanced regression analyses in the form of panel data analysis, data
must be organized in a different way compared to regular regression analyses. Panel data are
datasets in which each unit takes values for all included variables measured over a specified
number of times. This has the advantage that the time component can be included in analyses,
and the databases become much larger, often resulting in analyses of better quality.

There is a large battery of panel data analysis techniques, the distinction goes on which
assumptions are made about the variability of the variables over time. Common variants used
are fixed effect and random effect analyses. This analysis form will be reviewed in section 5.9.

Data to be used in panel data analysis must be imported as follows:

create-dataset <dataset>
import-panel <variable list> <measurement date list> as <alias>

Example: Data matrix using import-panel (3 variables, 3 measurements)

ID Time Variable 1 Variable 2 Variable 3

123456 2000-01-01 1 200000 0301

123456 2001-01-01 1 210000 0301

123456 2002-01-01 2 215000 1201

135791 2000-01-01 2 305011 1101

135791 2001-01-01 2 301000 1101

135791 2002-01-01 3 299000 0301

147036 2000-01-01 1 150000 2030

147036 2001-01-01 1 159000 2030

147036 2002-01-01 3 199000 0301

32

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Note:
● Panel datasets quickly become very large, since all units / individuals in the data set are

measured T times, where T stands for the number of measurements. This is especially
true if you import many variables as well

● A good practice when creating panel datasets is to first create a population of
appropriate size, then duplicate this and finally import panel data into the empty data set
of the duplicate population.

Example: Create population, duplicate units into new data set, and finally import panel data for
the given population (= residents in Oslo per January 1., 2010, aged 18-39)1

require no.ssb.fdb:12 as db

create-dataset population
import db/BOSATTEFDT_BOSTED 2010-01-01 as residence
import db/BEFOLKNING_FOEDSELS_AAR_MND as birth_year_month
generate age = 2010 - int(birth_year_month/100)
keep if age >= 18 & age < 40 & residence == '0301'

clone-units population paneldata

use paneldata
import-panel db/INNTEKT_WLONN db/SIVSTANDFDT_SIVSTAND
db/BOSATTEFDT_BOSTED 2011-12-31 2012-12-31 2013-12-31 2014-12-31

1 Panel datasets are created using a single import-panel command. Multiple batches cannot be imported into the
same panel dataset. Nor is it possible to mix common cross-sectional data and / or event-based data with panel data.

It is also possible to create a panel dataset by converting an existing cross-sectional dataset
into panel / long format using the reshape-to-panel command. See section 2.9.1 for a
review of this command.

2.5 How to navigate between datasets

The following command syntax can be used to navigate between datasets:

use <dataset>

33

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

However, when a new dataset is created through the command create-dataset, you will
move automatically into this dataset.

2.6 Population filtering

A filter option may be used to specify which values to be included in your dataset, f.x. if only
females are to be imported:

import BEFOLKNING_KJOENN as gender, values ('2')

Alternatively, variables may first be imported as usual, followed by a trim procedure using the
commands drop or keep:

import BEFOLKNING_KJOENN as gender
drop if gender == '1'

In microdata.no, if-expressions may be used in many contexts, also in relation to the drop and
keep commands. The following common logical operators are possible to use:

- Larger than >
- Less than <
- Equal to ==
- Larger than or equal >=
- Less than or equal <=
- Not equal !=
- Or |
- And &

The following expression will remove individuals under 18 years from your population:

keep if age >= 18

Values for missing data can be assigned as follows:

sysmiss(<variable>)

Individuals with no data on wage income can be removed from your population as follows:

34

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

drop if sysmiss(wage)

It is also possible to create random samples from a dataset. The command sample may be
used for such purposes. For more about syntax and examples, use the command help
sample.

2.7 Removing variables from datasets
In an analysis situation there is often a need to remove some of the variables first imported, as
they are considered irrelevant. For instance, some variables are used solely for the purpose of
deriving values for new variables, and are considered redundant after the particular operation is
finished.

Streamlining a dataset is done through the command drop, where the name of the redundant
variable is specified:

drop <variable>

As we have seen, the drop-command can be used both to remove units (= rows in the data
matrix), see section 2.6, and variables (= columns in the data matrix).

2.8 How to aggregate and link datasets
Datasets are usually built up through the command import, which adds one and one variable
measured at specified custom dates. Such variables must have the same unit type, usually
persons represented by the unique keyidentifier PERSONID_1. The linking is done
automatically through the analysis system, so that the user only has to deal with the
import-command, specifying variable name, measurement date and optional alias.

The analysis system makes it also possible to analyze data measured over other unit types
such as event level, municipal level, family level, course level, job level etc. Data with unit types
other than persons cannot be imported directly into an individual level dataset (datasets with
persons as unit type, given by the key identifier variable PERSONID_1). They must first be
processed into the appropriate unit level given by the variable to be used as a link key in the
target data set. Only then the datasets can be linked together using the command merge.

35

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Data at a lower unit level than person, e.g. event or course level , must be aggregated to person3

level using the command collapse() before merging the data into an individual level datasett
using merge. The collapse()-command does two operations:

● Aggregates data into a higher unit level given by an identifier variable. In principle, all
categorical variables may be used as identifier, e.g. by using municipality as identifier,
you can aggregate data into municipality level data

● Calculates an aggregate value across all units, for each of the new aggregated units.
Measurement type is specified in the parenthesis that follows the command, such as
sum, mean, maximum, number of values etc.

Data at the same or higher unit level than person, e.g. municipality or family level, however, can
be connected to a personal data set using the corresponding variable in the target data set
(using it as a link key).

Example on aggregating course data (data on ongoing studies) from course level to person4

level for merging into a person level dataset:

collapse(max) edulevel, by(personid)
rename edulevel highest_edulevel
merge highest_edulevel into persondataset

Example on aggregating from person level to family level (sums income across all family
members within each family and calculate family income), and then merging family income into
a person level dataset:

collapse(sum) income, by(familynumber)
rename income familyincome
merge familyincome into persondataset on familynumber

Note that in the example above, the link variable is specified through the expression on
familynumber. This must always be done if you use other link variables than the
PERSONID_1 key identifier.

See section 2.11 for examples on how to link information on parents, families and courses into
your individual level dataset. The latter illustrates the interconnections of data at a lower level
than persons (course data are information on ongoing education represented by the relevant

4 Course data together with job data are a bit special in relation to other personal data. See footnote 3 on
the previous page.

3 Course data is slightly different from other personal data as these data even after extraction at a given
time contain personal data with several observations per individual. This reflects the fact that it is possible
to participate in several different courses / studies at the same time. The same principle applies to job
data where it is possible to have several jobs at the same time.

36

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

course/subject taken at a given time, where people can take several courses simultaneously).
Data on parents and families illustrate interconnections of data at a higher level than person.

2.9 Restructuring datasets
Ordinary cross-sectional datasets are created in microdata.no by using the import command
to add one variable at a time. The dataset will then contain information at the variable level,
where each unit (individual) has one record each. To add repetitive measurements of a variable,
this must be done by importing the relevant variable several times with new time indications.
This data format is often called "wide-format" since information is organised horizontally.

Data can also be organised vertically as panel data, also called "long-format". The command
import-panel can be used for this, where you specify a set of variables, as well as a set of
measurement dates at which you want the information to be measured. Each unit (individual)
will in this case have more than one record, depending on how many measurement dates are
specified.

Sections 2.3.1 and 2.4 explain the principles surrounding these two main types of data
organisation in more detail.

It is also possible to restructure the data organisation from cross-sectional format (wide) to panel
data format (long) and vice versa by using respectively the reshape-to-panel and
reshape-from-panel commands. The following sections will explain how to use these two
commands.

2.9.1 Restructuring from cross-sectional data to panel data
For statistics and analyses in microdata.no, datasets created through the command import are
normally used. These are data sets of the “wide” type, where information about all units in a
population is structured horizontally at a variable level. The new reshape-to-panel
command now makes it possible to change the data structure to long-format (panel-format),
where information about each unit (individual) is structured vertically at the observation / record
level.

Variables that are measured over several times and that you want in long / panel format, must
be named through reshape-to-panel with specified prefixes that consist of the letters
(prefix) from the original variable in the wide dataset. Other variables for which no prefix is
 specified, typically information that is only measured once (gender, country of birth, etc), are

37

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

automatically defined as fixed information and the values for these are repeated for all
sub-levels of each unit.

The suffixes of the original wide variables with repetitive measurements must consist of
integers. These will form the sublevel of the long / panel dataset. Typical examples of suffixes
would be two- or four-digit years, or other types of time indications that also point to month or
quarter, e.g. 201901, 201902 etc. You are free to choose other types of suffixes as long as it
consists of digits . Suffixes of type 1, 2, 3, 4 etc are also allowed.5

The illustration below shows how the restructuring takes place under the hood. The example
shows a wide-format dataset that contains the variables sivstand18-sivstand20, lønn18-lønn20,
and kjønn. Marital status (sivstand) and wage (lønn) are thus measured for the years
2018-2020, while gender (kjønn) is a fixed piece of information that is only measured once. The
dataset is converted to long format using the command reshape-to-panel sivstand
lønn. The variable date@panel is created automatically and contains the sublevel which in this
case is a double-digit year.

5 The character "_" is also allowed, e.g. “sivstatus2019_01_01”. However, after the reshape operation is
completed, the special character will be removed from the sub-levels. For example, using the suffix
“2019_01_01”, the corresponding sublevel will be changed to “20190101” in the transformed dataset.

38

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

The reshape-to-panel command has several uses:

● A more flexible alternative to import-panel, which also creates panel datasets, but
which has some limitations. Among other things, all variables here must have valid
measurement dates for all measurements, which can be challenging if cross-sectional
variables are included in the data set (variables that only have values on given annual,
quarterly or monthly dates). The reshape-to-panel command allows all
combinations of variables.

● Some analyses require a long format, and the support for this is now greatly improved. In
addition, you have access to all the flexibility and functionalities associated with wide
data sets, and can do the entire adaptation in this format before you easily restructure to
long format afterwards. This is useful if you need to compare and perform operations
over variable values across sub-level (over time), e.g. compare the value of wages in
2020 compared to 2019.

See section 2.12 for example of how this is done in practice.

2.9.2 Restructuring from panel data to cross-sectional data
Datasets created through one of the commands import-panel or reshape-to-panel are
of the panel / long format type where repetitive variable observations are organized vertically at
record level. The new reshape-from-panel command makes it possible to change the data
structure to wide-format where the information is structured horizontally at the variable level with
one record per unit.

All variables in the panel dataset you are in are restructured to wide format after the command
is run, and the variables are given a suffix based on the sublevel given by the auxiliary variable
date@panel . Note that also variables for fixed information will be duplicated with suffixes6

related to sublevel (although they do not change over time). This can be solved by deleting
redundant variables after the dataset has been converted.

The illustration below shows how the restructuring logically takes place under the hood. The
example shows a data set with long format that contains the variables sivstand (marital status),
lønn (yearly wage) and kjønn (gender), in addition to the auxiliary variable date@panel which

6 For classical panel dataset created by using the import-panel command, the suffixes are somewhat
different. When using tabulate-panel or summarize-panel on such datasets, it will appear that the
sublevel has values of the type “YYYY-MM-DD”, but this only applies as a display format. In this case, the
actual values for date@panel use reference dates as the value format (number of days measured from
1/1 1970). This is solved by renaming the variable names with the rename command in the final step.

39

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

contains the value of the sublevel, in this case the years 2018-2020 (double digits). The dataset
is converted to wide format using the reshape-from-panel command. Note that you do not
specify variables or prefixes. All variables are converted to wide format with associated suffixes,
including variables that measure fixed information such as gender.

The reshape-from-panel command completes by allowing you to convert back and forth
between wide- and long-format, providing the following possibilities:

● It is not possible to import new variables into a dataset created using the
import-panel command. This can be solved by using reshape-from-panel to
convert to wide-format, and then import new variables as needed using import. Once
you have the variables you need, you can convert back to panel / long format again by
using the reshape-to-panel command.

● Panel datasets provide less flexibility when comparing and performing operations over
variable values across sub-levels (over time). Examples of this are when you want to
create a variable that consists of the average wage measured over 2019 and 2020, or
when you want to create a condition that is based on cases where the yearly wage in
2020 is greater than in 2019. This can also be solved by converting to wide-format, then
do the desired operations and convert back afterwards.

40

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

See section 2.13 for example of how this is done in practice.

2.10 Examples: Creating and revising a dataset

textblock

Start by importing the necessary variables

First, a connection to the data bank is made, then a dataset called demographics is created. All imports

and processing will take place in this particular dataset until actively changing dataset through the

command `use <dataset>`

Start- and stop dates are also provided through the import-command

endblock

require no.ssb.fdb:12 as db

create-dataset demographics

import db/BEFOLKNING_KJOENN as gender

import db/BEFOLKNING_FOEDSELS_AAR_MND as birth_year_month

import db/SIVSTANDFDT_SIVSTAND 2015-01-01 as maritalstate

import db/INNTEKT_BRUTTOFORM 2015-01-01 as wealth

// Rename variables by adding postfix referring to year

rename maritalstate maritalstate15

rename wealth wealth15

// Drop variable gender from dataset

drop gender

// Keep only married persons

keep if maritalstate15 == '2'

41

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

2.11 Examples: How to link data with unit levels other than
individual level

Example: Linking of parental information

textblock

How to use parental information in analyses

--

The database contains variables for father’s and mother’s birth identification number respectively,

which makes it possible to link parental information with an individual based dataset.

The command `merge` makes it possible to link datasets. The key unit identification variable of the

target dataset is used by default, unless customized through an "on"-option".

In this example, a separate dataset is made for fathers and mothers, which are linked to a personal

level dataset via the key-link variables `fnr_far` and `fnr_mor`.

endblock

//Connect to datastore

require no.ssb.fdb:12 as db

//Create a main dataset with links to fathers and mothers

create-dataset persondata

import db/INNTEKT_WYRKINNT 2019-01-01 as workincome

import db/BEFOLKNING_KJOENN as gender

import db/NUDB_BU 2019-01-01 as edu

import db/BEFOLKNING_FAR_FNR as idnr_father

import db/BEFOLKNING_MOR_FNR as idnr_mother

//Import data on parents and merge into main dataset

create-dataset parents

import db/INNTEKT_WYRKINNT 2019-01-01 as workincome_father

import db/NUDB_BU 2019-01-01 as edu_father

clone-variables workincome_father -> workincome_mother

clone-variables edu_father -> edu_mother

merge workincome_father edu_father into persondata on idnr_father

merge workincome_mother edu_mother into persondata on idnr_mother

//Perform basic linear regression analysis to test for covariation with parental income

42

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

use persondata

generate male = 0

replace male = 1 if gender == '1'

destring edu

generate high_edu = 0

replace high_edu = 1 if edu >= 700000 & edu < 900000

replace high_edu = edu if sysmiss(edu)

destring edu_father

generate high_edu_father = 0

replace high_edu_father = 1 if edu_father >= 700000 & edu_father < 900000

replace high_edu_father = edu_father if sysmiss(edu_father)

destring edu_mother

generate high_edu_mother = 0

replace high_edu_mother = 1 if edu_mother >= 700000 & edu_mother < 900000

replace high_edu_mother = edu_mother if sysmiss(edu_mother)

summarize workincome workincome_father workincome_mother

histogram workincome_father, percent

histogram workincome_mother, percent

correlate workincome_father workincome_mother

tabulate high_edu_father high_edu_mother

regress workincome male workincome_father workincome_mother high_edu high_edu_father

high_edu_mother

43

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Example: Linking of family level data

textblock

Aggregate data into family level

Individuals can be linked to a family number that can be used to aggregate into family-level

information. Individuals belonging to the same family will be registered with the same family number

consisting of the person ID of the oldest person in the family.

In this example, a personal dataset is first created and then filtered down to persons in families

consisting of married couples with small children (code 2.1.1). Then, demographic information is

retrieved.

Family income is information at family level, i.e. unit = family. Therefore, a new dataset must be

created for this purpose (datasets cannot consist of variables with different unit types). Occupational

income is then imported at person level, and next the command `collapse(sum)` is used to sum the

incomes at family level (`by (famnr)`). The result is a dataset with family as unit.

Finally, family income is linked to the person dataset through the command `merge`.

endblock

//Connect to datastore

require no.ssb.fdb:12 as db

//Create an individual level dataset consisting of persons in families defined by married couples with

small children

create-dataset persondata

import db/BEFOLKNING_REGSTAT_FAMTYP 2017-01-01 as famtype

tabulate famtype

keep if famtype == '2.1.1'

//Add demographical information

import db/BEFOLKNING_KJOENN as gender

import db/BEFOLKNING_FOEDSELS_AAR_MND as birthdate

generate age = 2017 - int(birthdate/100)

import db/BEFOLKNING_KOMMNR_FAKTISK 2017-01-01 as municipality

generate county = substr(municipality, 1, 2)

import db/BEFOLKNING_BARN_I_HUSH 2017-01-01 as children

44

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

//Create dataset for generating family level income (unit type = family)

create-dataset familydata

import db/BEFOLKNING_REGSTAT_FAMNR 2017-01-01 as famnr

import db/INNTEKT_WYRKINNT 2017-01-01 as workincome

collapse (sum) workincome, by(famnr)

rename workincome familyincome

//Merge family income into individual level dataset (unit type = individuals)

merge familyincome into persondata on PERSONID_1

//Generate family level statistics. The family number consists of the personal id of the eldest person in

the family, so by removing individuals with missing family level income, the dataset now has unit type

= family. All individual information will be assosiated with the eldest person in the family

use persondata

drop if sysmiss(familyincome)

rename age age_oldest

rename gender gender_oldest

define-labels countytxt '01' Østfold '02' Akershus '03' Oslo '04' Hedmark '05' Oppland '06' Buskerud

'07' Vestfold '08' Telemark '09' 'Aust-Agder' '10' 'Vest-Agder' '11' Rogaland '12' Hordaland '14' 'Sogn og

Fjordane' '15' 'Møre og Romsdal' '16' 'Sør-Trøndelag' '17' 'Nord-Trøndelag' '18' Nordland '19' Troms

'20' Finnmark '21' Spitsbergen '25' 'Studying abroad' '99' Unknown

assign-labels county countytxt

tabulate county

histogram age_oldest, discrete

histogram children, discrete percent

tabulate children

tabulate children, cellpct

tabulate children gender_oldest

summarize familyincome

barchart (mean) familyincome, by(county)

barchart (mean) familyincome, by(children)

histogram familyincome, freq

histogram familyincome, by(children) percent

45

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Example: Linking/extraction of course level data

textblock

Retrieve information about ongoing education (courses)

Information about ongoing education (so-called course data) exist with courses as unit level (with

associated course identifier). Courses are given by the combination person x course type, where each

individual can in practice be represented with several course types at the same time.

Since the course data does not have persons as unit, these cannot be imported into the personal

dataset in the usual way, but must be linked by using the command `merge`.

First, add a link between the course ID and the person ID in the course dataset, and then aggregate to

person level using the `collapse`-command. Finally, link the aggregated course data to the personal

dataset.

In this example, a personal dataset is first created consisting of persons resident in Norway (regstatus

== '1') per 2019-01-01. Thereafter, history of ongoing education is retrieved for the whole year of

2019, where only data on higher education (master or higher, level 7 and 8) is kept. The `collapse

(count)` command is used to count the number of observations with ongoing education per individual

over the year 2019, and the result is then linked to the personal dataset for further analysis.

NB! Note that the variable `course type` after using `collapse` will consist of values for the current

statistics being generated, in this case the number of observations (`count`).

endblock

//Connect to datastore

require no.ssb.fdb:12 as db

//Create individual level dataset containing residents in Norway per 2019-01-01

create-dataset persondata

import db/BEFOLKNING_KJOENN as gender

import db/BEFOLKNING_STATUSKODE 2019-01-01 as regstatus

keep if regstatus == '1'

//Find individuals studying on higher education level during 2019

create-dataset coursedata

import-event db/NUDB_KURS_NUS 2019-01-01 to 2019-12-31 as coursetype

destring coursetype

keep if coursetype >= 700000 & coursetype < 900000

46

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

//Merge link between course-id and personal-id into course data

create-dataset link_course_person

import db/NUDB_KURS_FNR as idnr

merge idnr into coursedata

//Measure number of observations/records concerning higher educational studies per individual, and

merge into main individual level dataset

use coursedata

collapse (count) coursetype, by(idnr)

rename coursetype courses

merge courses into persondata

//Produce tabulation for higher level education studies (individual frequencies for 2019)

use persondata

generate edu_high = 0

replace edu_high = 1 if courses >= 1

tabulate edu_high gender

Example: Linking/extraction of course level data for a specific date

textblock

Retrieve information about ongoing education (courses) measured at a specific date

Data on ongoing education (studies) exist with course as unit level (through unique

course-identificator numbers). Courses are defined by the combination person x course type, and each

individual can be represented by more than one course types simultaneously.

As data on ongoing education do not have person as unit level, such data can not be imported directly

into an individual level dataset, but instead need to be merged through the command merge.

First, one must add/import a variable containing a link between course-ids and corresponding

person-ids onto the course data (ongoing education). Next, one must aggregate the data to individual

level through the command collapse. Finally, the data need to be merged into the main individual level

dataset.

In the example below, an individual level dataset containing persons resident in Norway (regstatus ==

'1') per 2019-01-01 is used as main dataset. Then ongoing education study events per 2019-11-01 are

collected into a separate dataset. The command collapse (count) is used to count the number of

47

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

observations/events for ongoing education per individual on the specific date, and the result is finally

merged into the main individual level dataset for further analysis.

Note: The values of the variable coursetype will after the collapse-transformation be replaced by

numerical values refering to the statistical measure being used, in this case count (number of

observations/events).

endblock

//Connect to datastore

require no.ssb.fdb:12 as db

//Create individual level dataset containing residents in Norway per 2019-01-01

create-dataset persondata

import db/BEFOLKNING_KJOENN as gender

import db/BEFOLKNING_STATUSKODE 2019-01-01 as regstatus

keep if regstatus == '1'

//Retrieve people who are studying as of 1st November 2019, and connect this onto the personal data

set. Since course data can have several observations per individual, the collapse command must be

used to aggregate up to person level. We use count as aggregation value (number of records)

create-dataset coursedata

import db/NUDB_KURS_NUS 2019-11-01 as coursetype

import db/NUDB_KURS_FNR as idnr

collapse (count) coursetype, by(idnr)

rename coursetype courses

merge courses into persondata

//Produce tabulation for individuals who are studying as of 1st November 2019

use persondata

generate student = 0

replace student = 1 if courses >= 1

tabulate student gender

2.12 Examples: How to restructure datasets from cross-sectional
to panel data format (from "wide" to "long")

require no.ssb.fdb:17 as db

//Create a common type wide format dataset consisting of a 1% random sample of all residents per

1/1 2018

48

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

create-dataset wide

import db/BEFOLKNING_STATUSKODE 2018-01-01 as regstat18

keep if regstat18 == '1'

sample 0.01 333

import db/BEFOLKNING_STATUSKODE 2019-01-01 as regstat19

import db/BEFOLKNING_STATUSKODE 2020-01-01 as regstat20

import db/SIVSTANDFDT_SIVSTAND 2018-01-01 as sivstand18

import db/SIVSTANDFDT_SIVSTAND 2019-01-01 as sivstand19

import db/SIVSTANDFDT_SIVSTAND 2020-01-01 as sivstand20

import db/BEFOLKNING_KJOENN as kjønn

import db/INNTEKT_WLONN 2018-01-01 as lønn18

import db/INNTEKT_WLONN 2019-01-01 as lønn19

import db/INNTEKT_WLONN 2020-01-01 as lønn20

//Run some testings of wide format data

tabulate regstat18, missing

tabulate regstat19, missing

tabulate regstat20, missing

tabulate sivstand18, missing

tabulate sivstand19, missing

tabulate sivstand20, missing

tabulate kjønn, missing

summarize lønn18 lønn19 lønn20

//Convert to long format (panel data)

reshape-to-panel regstat sivstand lønn

//Run some new tests of the long format data for comparing purposes

tabulate date@panel, missing

tabulate-panel regstat, missing

tabulate-panel sivstand, missing

tabulate-panel regstat sivstand, missing

tabulate-panel kjønn, missing

tabulate-panel regstat kjønn, missing

tabulate-panel sivstand kjønn, missing

summarize lønn

summarize-panel lønn

49

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

2.13 Examples: How to restructure datasets from panel data to
cross-sectional format (from "long" to "wide")

require no.ssb.fdb:17 as db

//Create a wide format dataset consisting of a 1% sample of all residents as of 1/1 2019

create-dataset wide

import db/BEFOLKNING_STATUSKODE 2019-01-01 as regstat19

keep if regstat19 == '1'

sample 0.01 333

import db/BEFOLKNING_STATUSKODE 2020-01-01 as regstat20

import db/SIVSTANDFDT_SIVSTAND 2019-01-01 as sivstand19

import db/SIVSTANDFDT_SIVSTAND 2020-01-01 as sivstand20

import db/BEFOLKNING_KJOENN as kjønn

import db/INNTEKT_WLONN 2019-01-01 as lønn19

import db/INNTEKT_WLONN 2020-01-01 as lønn20

tabulate regstat19, missing

tabulate regstat20, missing

tabulate sivstand19, missing

tabulate sivstand20, missing

tabulate kjønn, missing

summarize lønn19 lønn20

//Restructure into panel/long format

reshape-to-panel regstat sivstand lønn

tabulate-panel regstat, missing

tabulate-panel sivstand, missing

tabulate-panel kjønn, missing

summarize-panel lønn

//Restructure back into original wide format

reshape-from-panel

drop kjønn20

rename kjønn19 kjønn

50

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

tabulate regstat19, missing

tabulate regstat20, missing

tabulate sivstand19, missing

tabulate sivstand20, missing

tabulate kjønn, missing

summarize lønn19 lønn20

//Create a new panel-dataset for the same population using the import-panel command

clone-units wide paneltest

use paneltest

import-panel db/BEFOLKNING_STATUSKODE db/SIVSTANDFDT_SIVSTAND db/INNTEKT_WLONN

db/BEFOLKNING_KJOENN 2019-01-01 2020-01-01

rename BEFOLKNING_STATUSKODE regstat

rename SIVSTANDFDT_SIVSTAND sivstand

rename INNTEKT_WLONN lønn

rename BEFOLKNING_KJOENN kjønn

tabulate-panel regstat, missing

tabulate-panel sivstand, missing

tabulate-panel kjønn, missing

summarize-panel lønn

//Restructure into wide format

reshape-from-panel

drop kjønn18262

rename kjønn17897 kjønn

rename regstat17897 regstat19

rename regstat18262 regstat20

rename sivstand17897 sivstand19

rename sivstand18262 sivstand20

rename lønn17897 lønn19

rename lønn18262 lønn20

summarize lønn19 lønn20

51

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

3.Variable adaptations
Most variables imported into a dataset need to be recoded before further analysis. Further, there
is usually a need to create separate variables based on the imported information. This is done
through the commands generate, replace and recode.

3.1 Creating new variables and recoding: generate/replace
The command generate is a tool for generating new variables. It requires name of variable
and what values it should have. This can be a specific value or a value based upon an equation/
formula. If-conditions are used to indicate which cases/units are to receive a value.

Note that generate can only be used to specify one value. If you want to specify more values
(based on other conditions), the replace-command can be used to complete the process.

The generate-command can also be used to copy other variables: generate <new variable>
= <old variable>. This too can be combined with if-conditions.

Example on how to code the dummy "male" derived from the source variable
BEFOLKNING_KJOENN (contains information on gender, where the alphanumerical value '1'
represents males):

import BEFOLKNING_KJOENN as gender
generate male = 1
replace male = 0 if gender != '1'

There are many possible ways to create logical conditions, all of which will give the same result.
The dummy variable “male” could also be coded as follows:

import BEFOLKNING_KJOENN as gender
generate male = 0
replace male = 1 if gender == '1'

52

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Note the following when recoding or generating new variables:

● “=” are used to set values through the commands generate or replace. However,
“==” are used in relation to logical if-expressions.

● Values for alphanumerical variables need to be specified with singular quotation marks
('1', '2', … etc), while numerical values are specified without quotation marks (1,
2, …. etc).

○ The value format are found by looking at the specific variable on the top left (the
dataset window) or bottom left (registry database window).

● Code for missing data are specified the following way: sysmiss(<variable>)

○ Example (removing units with missing data on “gender”:

import BEFOLKNING_KJOENN as gender
generate male = 1
replace male = 0 if gender != '1'
drop if sysmiss(gender)

● The following logical operators may be used in if-expressions:

○ Larger than >
○ Less than <
○ Equal to ==
○ Larger than or equal to >=
○ Less than or equal to <=
○ Not equal to !=
○ Or |
○ And &

● Dummy variables need to be numerical of methodically reasons, and must also take the
values 1 and 0. A dummy variable cannot take only the value 1 as this will give
unwanted results or error messages when performing regression analysis. In practice,
one must therefore be careful to code all units that do not have the "success" value with
the value 0 (see example at the top of the previous page)

● When using dummy variables in if-expressions, there is no need to specify the value 1.

○ Example: The expression tabulate sivilstatus if male == 1 will give
the exact same result as tabulate sivilstatus if male

53

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

● If the purpose of the adaptation of the variables is to perform regression analyses,
categorical values should be coded in numerical form. If not, there is a risk that the
system will not accept the variable input, and an error message may occur when running
commands such as regress, logit, etc.

● For methodological reasons, categorical variables should usually be arranged as dummy
variables such as in the example of the variable "mann" above. This also applies to
multi-category variables (more than two categories) such as "Education level". In such
cases, a set of dummy variables which, in combination, corresponds to the
multi-category variable need to be created. In practice, each category minus the
reference/base category needs to be represented by separate dummy variables, where
the estimates are interpreted relative to the reference category. The process of creating
sets of dummy variables can however be automated by using the prefix "i." in front of the
variable name in the regression expression. Then the lowest value is automatically used
as the reference value.

● Missing values: Be aware that all units where at least one of the included variables has a
missing value are excluded from regression runs. Variables with many missing values
 that are not recoded will then result in the regression analysis being performed on a
much smaller data set than planned. This is something one should be aware of during
the facilitation. In the gender example, there will typically be few units/individuals with
missing value, but there may be other variables that indicate e.g. social security benefits
such as "disability". Here, a majority will have missing value, and only those who are
disabled will have a valid value. In such cases one should code in the following manner:

import PENSJONER_UFOERGRAD 2010-01-01 as disabilitydegree
generate disabled = 1
replace disabled = 0 if sysmiss(disabilitydegree)

● Missing Values for income variables: This will typically refer to all people with income =
0. If these need to be included, they should be recoded into 0’s:

replace income = 0 if sysmiss(income)

54

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

3.2 Variable recoding: recode
The command recode can be used to recode variables, as an alternative to replace. This is
a useful tool when recoding many values/categories within a single variable. The command
makes it possible to complete the full set of recodings in a single command expression, which
contributes to shorter processing time. It is also possible to recode multiple variables at a time,
using recode.

Example on coding the variable "male" derived from BEFOLKNING_KJOENN (contains data on
gender where male = ‘1’ and female = ‘2’) using recode:

import BEFOLKNING_KJOENN as male
destring male
recode male (2 = 0)

It is possible to use recode on both numeric and alphanumerical variables, and you can also
create value labels for the recoded values inside the recode expression itself.

Examples on how to encode groups of numbers for the variables var1 and var2:

- recode var1 var2 (1 2 3 = 0) (values 1-3 recoded into 0)

- recode var1 var2 (1/7 = 0) (values 1-7 recoded into 0)

- recode var1 var2 (1/7 = 0) (nonmissing = 1) (missing = 99)
(other valid values recoded into 1, missing values recoded into 99)

- recode var1 var2 (1/7 = 0) (* = 99) (all other values recoded into 99)

- recode var1 var2 (min/100 = 1)(101/max = 2)
(all values 100 or lower recoded into 1, all values 101 or greater recoded into 2)

- recode regstat (‘3’ ‘5’ = ‘0’ ‘not-resident’)
(the values ‘3’ and ‘5’ for the alphanumerical variable regstat are recoded into ‘0’ and are given the value
lable “not-resident”)

Note the following:
● The parameters min and max can only be used in connection with interval indications,

as in the example above.
● Alphanumerical values cannot be included in interval entries, only as individual values,

cf. the example above.
● Alphanumerical values and value labels can be specified with both single and double

quotation marks

For more information about recode, use the help recode command. This also shows an
overview of associated options.

55

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

3.2.1 Automatic recoding by uploading delimited files

In cases where you want to recode many variable values, e.g. recode all municipal codes and
replace them with codes for centrality, or recode from one industry standard to another, it will be
time consuming and cumbersome to enter each individual code in a recode expression. Such
expressions will typically form many lines depending on how many codes are to be recoded.

In microdata.no there is a solution for this. By clicking on the arrow symbol at the bottom left of
the script window, a dialog box will appear that allows you to upload a delimited file that you
have previously downloaded from e.g. Statistics Norway's standard classification page:
ssb.no/klass

56

http://ssb.no/klass

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

The specifications for the transcoding files can be found in the explanation in the dialog box.
Among other things, the file must be of the semicolon-separated type (.csv), and have four
columns that contain the following:

- From code
- From name (label)
- To code
- To name (label) (optional)

The functionality is adapted to Statistics Norway's standard correspondence files, but you can
also use other files or create your own, as long as they have the correct format and structure.

Once you have uploaded a transcoding file, microdata.no will automatically generate a recode
expression at the bottom of your active script, such as this (all you have to do afterwards is
replace the default variable name "variable" with the name of the variable to recode):

57

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

58

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Recipe for downloading correspondence file from Statistics Norway:

Step 1: Go to ssb.no/klass

59

http://ssb.no/klass

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Step 2: Select the topic you want to retrieve the transcoding file from, e.g. "Classification of
municipalities" which you will find under "Region"

60

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Step 3: Select the tab "Correspondences" and then the transcoding you are interested in, e.g.
“Centrality 2020”

61

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Step 4: This table changes from centrality code to municipal code. If you want to code the
opposite way, i.e. from municipal code to centrality code, click on "Invert table"

62

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Step 5: You now have a table that recodes from municipal codes to centrality code. This can be
downloaded by clicking on "Download CSV". Select the appropriate storage area on your PC
and retrieve the file when you are in the file upload dialog box in the script window.

63

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

3.3 Use of functions
In addition to the basic mathematical operators

=, +, -, /, *, (,),

microdata.no gives access to a large number of functions to be utilised in order to generate
variables. A specific example is the case of recoding residency from municipality into county
level. As data on residency takes alphanumerical values on municipality level by default (=
four-digit code where the first two-digits represent county number whereas the last two-digits
specifies the municipality within the county), the function substr() is needed in order to
retrieve the first two digits representing counties:

generate county = substr(residency,1,2)

The input parameters “1” and “2” inside the substr()-expression are referring to the starting
position and the number of characters to read respectively. The municipality of Bergen are
represented by the value '1201'. Retrieving the first two digits will result in the value ‘12’ which
represents the county of Hordaland.

Another typical use case for substr() is when there is a need for information on educational
level on a higher aggregated level than the default 6-digit code level. Using an educational
division on 1- or 2-digit level is very common. This function will suit as a very useful tool for such
a purpose.

Other important functions are round(), int(), alternatively floor(). These are useful for
the purpose of transforming decimal numbers into integers or to retrieve subvalues. round()
rounds decimal numbers the regular way, while int() and floor() rounds downwards. If
e.g. there is a need to retrieve the birth year from the numerical variable yearmonth (year and
month on the format YYYYMM), the following expression can be used:

generate byear = int(yearmonth / 100)

This expression will generate birth year by dividing by 100 and keeping the integer number
(skipping the decimal digits). In practice, this operation retrieves the first four digits from a
numerical 6-digit value. For example, to retrieve the value 2010 from the numerical value
201006 in order to calculate age per 2013, the following expression can be used:

generate age = 2013 - int(yearmonth / 100)

If birth date is represented by an 8-digit numerical number (YYYYMMDD), the expression need
to be adjusted as follows:

64

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

generate age = 2013 - int(birthdate / 10000)

Appendix B presents a list of all available functions. Note that each function have requirements
regarding which type of variable formats they are suited for, e.g. substr() requires
alphanumeric values only.

3.4 How to generate time-aggregated values - collapse
In addition to aggregating data into a higher unit level , e.g. from person level into family level7

(or municipality level), the command collapse may also be used as a tool for statistical
measurements aggregated over a specified time span. In practice, this is the same as
aggregating data from event/longitudinal level into person level. Examples may be calculations
of a state duration measured over a given time interval, retrieval of status in a given time
interval, retrieval of number of occurrences in given states in a given time interval, or summation
of values over a given time interval.

This is done on event-organized data sets (see section 2.3.2) through the following command:

collapse (<aggregate measure>) <dataset>, by(<unit-id>)

Type of aggregation is required as input in the parenthesis following collapse, and then the
name on an event organized dataset. Aggregation type may be as follows:

- max maximum value
- min minimum value
- mean mean value
- median median valuei
- count number of values
- sum sum of values
- semean standard error of mean value
- sebinomial binomial standard error of mean value
- sd standard deviation
- percent percentage valid values
- iqr interquartile range (range between 75th and 25th percentiles)

7 See section 2.8

65

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

The option by(<unit-id>) is used to specify which unit type to aggregate over. This will
usually be individuals, given by the unit identification number contained by the key variabel
PERSONID_1.

Example 1: Calculate the number of times the individuals have changed their marital status
during 2000-2005

require no.ssb.fdb:12 as db
create-dataset maritalevent
import-event db/SIVSTANDFDT_SIVSTAND 2000-01-01 to 2005-01-01 as

maritalperiod
collapse (count) maritalperiod, by(PERSONID_1)
rename maritalperiod maritalstates
replace maritalstates = maritalstates - 1
tabulate maritalstates

Example 2: Calculate the number of divorces per individual during 2000-2005

require no.ssb.fdb:12 as db
create-dataset maritalevent
import-event db/SIVSTANDFDT_SIVSTAND 2000-01-01 to 2005-01-01 as

maritalperiod
keep if maritalperiod == '4'
collapse (count) maritalperiod, by(PERSONID_1)
rename maritalperiod divorces
tabulate divorces

Note that the variable maritalperiod initially contains data on marital status (each new
record represents a change in marital status). However, through the steps in the examples, the
variable is transformed from containing event level data into containing the count-value
measured over the 2000-2005 period for the specific unit level (= individual). Thus, following the
collapse-procedure, the variable maritalperiod will now contain the number of marital
statuses measured per individual over the period (example 1) or the number of divorces per
individual measured over the same period (= the number of records containing the value ‘4’
which represents the status “divorced”) (example 2).

NB! In order to be able to continue working with the aggregated value generated through
collapse, the dataset needs to be linked with the other variables placed in the main analysis
dataset built through the import-procedure (see section 2.3.1). See section 2.8 on how to do
this.

66

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

3.5 Renaming variables
It is appropriate to have understandable and intuitive variable names, and renaming variables is
fully possible. This is easily done through the following command:

rename <variable_name_old> <variable_name_new>

As microdata.no variables are strongly time-related, a good rule will be to include time indication
in the name (e.g. year). Example:

rename sivstand sivstand00

3.6 Using labels
Tabulations and other statistical output become more understandable by attaching text-labels to
the various categorical variable values. Microdata.no makes it possible to define a set of value
labels to be attached to all variables sharing the same type of categorization:

define-labels <label-set name> <value1> <label1> <value2>
<label2> … <valuen> <labeln>

assign-labels <variable> <label-set name>

Labels are first made using define-labels, and then they are attached to the relevant
variable(s) in the next stage.

Example of a categorical (alphanumerical) residency variable at county level (variable county).
The label set named "countystring" can, through the command assign-labels, be attached
to as many variables as possible, given that they share the same type of value set (it is not
necessary to create the same set of labels several times):

define-labels countystring '01' 'Østfold' '02' 'Akershus' '03'
'Oslo' '04' 'Hedmark' '05' 'Oppland' '06' 'Buskerud' '07'
'Vestfold' '08' 'Telemark' '09' 'Aust-Agder' '10' 'Vest-Agder'
'11' 'Rogaland' '12' 'Hordaland' '14' 'Sogn and Fjordane' '15'
'Møre and Romsdal' '16' 'Sør-Trøndelag' '17' 'Nord-Trøndelag'
'18' 'Nordland' '19' 'Troms' '20' 'Finnmark' '99' 'Unknown'

assign-labels county countystring

67

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Note: If the variable contains numerical values, the values in the define-labels expression
need to be specified without quotation marks. The labels that are linked to the values do not
need to have quotation marks around if they only contain letters. But labels that contain special
characters such as spaces, hyphens, slashes, dots, etc., must have quotation marks around. If
you are unsure, you can always use quotation marks around labels no matter what.

It is also allowed to use double quotation marks if preferred.

NB! Text-labels must not contain commas, as this will result in error messages when executing
(the comma character is reserved by the system to indicate the use of options)!

3.7 Changing value format from alphanumerical (text) into
numerical
Many variables available through microdata.no contain alphanumerical values (text format).
However, the command destring can convert such values into numerical format. By default,
the variable will be overwritten by the new format (a separate variable will not be created):

destring <variable/variable list> [, <options>]

If there are values containing non-numerical characters, e.g. “,”, “.”, “-”, “nkr”, “$”, then the
conversion will not complete unless the options force or ignore() are used.

The option force will force the system to convert into numerical values no matter what, where
values containing non-numerical characters will be given the value for missing value: sysmiss

The option ignore() makes it possible to define which characters/symbols to be ignored
during the conversion process. This could be useful for values formatted by hyphens, commas,
thousands separators etc. The following example will ignore dots, commas and hyphens that
occur in values for the variable var1:

destring var1, ignore('.,-')

Alphanumerical values containing commas as decimal separators ('2,1', '10000,00' etc) may be
converted directly into numerical values while keeping the decimals. By doing so, the converted
values will be using dots as decimal separator. The option dpcomma can be used for such
operations.

68

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

For more information on the use of destring, e.g. overview of all available options, use the
help destring command.

3.8 Example

// Connect to data bank

require no.ssb.fdb:12 as db

// Retrieve required variables

create-dataset demographics

import db/BEFOLKNING_KJOENN as gender

import db/BEFOLKNING_FOEDSELS_AAR_MND as birth_year_month

import db/INNTEKT_BRUTTOFORM 2015-01-01 as wealth

import db/BOSATTEFDT_BOSTED 2015-01-01 as residence

// Generate age in 2015 from birthyear

generate age = 2015 - int(birth_year_month / 100)

// Generate dummy variable for male by using gender variable

generate male = 0

replace male = 1 if gender == '1'

// Group wealth into four intervals

generate wealthint = 1

replace wealthint = 2 if wealth > 150000

replace wealthint = 3 if wealth > 250000

replace wealthint = 4 if wealth > 400000

// Designate wealth in 1000 nkr

generate wealth1000 = wealth / 1000

// Recode from municipality to county level

generate county = substr(residence,1,2)

// Add value labels for counties (=> nicer descriptive output)

define-labels countystring '01' 'Østfold' '02' 'Akershus' '03' 'Oslo' '04' 'Hedmark' '05' 'Oppland' '06'

'Buskerud' '07' 'Vestfold' '08' 'Telemark' '09' 'Aust-Agder' '10' 'Vest-Agder' '11' 'Rogaland' '12'

69

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

'Hordaland' '14' 'Sogn and Fjordane' '15' 'Møre and Romsdal' '16' 'Sør-Trøndelag' '17' 'Nord-Trøndelag'

'18' 'Nordland' '19' 'Troms' '20' 'Finnmark' '99' 'Unknown'

assign-labels county countystring

tabulate county

4.Descriptive variable statistics
Microdata.no provides various techniques for data exploration. The most basic and useful tools
are frequency tabulations (one-way or cross tables) and summary statistics (for
numerical/metrical variables). It is also possible to visualize through histograms, barcharts,
piecharts or anonymised scatterplots (hexbinplots).

The microdata.no analysis system currently has the following commands available for the
production of descriptive statistics:

- tabulate
- summarize
- boxplot
- hexbin
- piechart
- histogram
- barchart
- sankey

Through various options, alternative representations of the same distributions may be displayed,
and specified units can also be filtered out from the tables/figures through if-conditions.

70

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.1 Tabulate - frequency tables
The command tabulate is a tool for creating frequency tables, and is the most common
statistics command to map out data/variables and to produce descriptive statistics.

The command can be applied to all categorical variables. These are often alphanumerical,
however it is quite possible to create frequency tables for numerical variables as well, as long as
the number of values does not become too extensive.

The standard display for tables generated through tabulate is cells containing frequency
numbers (number of units), which can be one-way, two-way, or multi-dimensional. By default,
any labels attached to a variable value set are shown in the leading columns and table header,
and missing values will be omitted from the table basis.

Through the use of options the table presentations can be customized:

- View percentages instead of frequencies
- Show figures in leading columns and table header without value labels
- View tables with missing values included
- Create volume tables that show summary values (average, sum, etc.) for any variable

within each cell
- Conduct a chi-test (tests for deviation from a completely random bivariate distribution)

through a chi2-option

Like most microdata.no commands, tabulate may be used in combination with if-conditions
to control which units to be included in the specific table, i.e. dataset populations do not
necessarily have to be trimmed in advance of statistical executions.

Syntax expression:

tabulate <variable/variable list> [, <options>]

For more information about this command, use the help tabulate command. This will
display syntax examples and a complete list of available options that can be used to customize
the appearance of the statistics generated.

71

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Tip:

Tables generated through the command tabulate can be exported to other programs such
as Excel, Word, Google Sheets, etc. This is done by clicking on a "copy"-icon that pops up
when the mouse cursor is over the table. Then use the key combination <Ctrl> + <C> and
paste into the desired document. This solution is also applicable for other types of output,
such as regress.

4.1.1 One-way frequency tables
Example of frequency table for the variables "residence county per 2000-01-01" and gender
respectively:

72

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.1.2 Multi-dimensional frequency tables
Multi-dimensional frequency tables are tables that shows distributions over 2 or more variables.
They contain cell frequency values, row sums, column sums, and total sums (sum of all inner
cells).

Example of frequency table showing distributions over gender and registry status:

Example of three-dimensional frequency table showing distributions over gender, registry status,
and residence county (note that the illustration does not show the whole table):

73

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.1.3 Frequency tables using percentages
The tabulate-command can also be used to show frequency distributions through
percentages. This is done through the following options:

- rowpct row percentages (share of row total)
- colpct column percentages (share of column total)
- cellpct cell percentages (share of total summed over all inner cells)
- freq frequency values (default, only used in combination with percentage
presentations)

More options can be combined in the same command expression, e.g. to show both frequencies
and row percentages in the same table (see example #4 below).

Example:

74

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.1.4 Frequency tables and category labels
Labels are used by default for variable values in the leading column and table header. However,
this can be turned off by using the option nolabels, showing only the values.

75

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Example:

4.1.5 Frequency tables and missing values
By default, missing values are not included during the tabulate-calculations, unless the
missing-option is used.

Example:

76

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.1.6 Frequency table filtering
Frequency tables can be generated for sub-populations through the use of if-conditions, i.e.
there is no need to trim the dataset in advance.

Examples:

77

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

78

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.1.7 Volume tables
The tabulate-command can also be used to generate volume tables: Instead of frequencies
or frequency percentages, each cell will show summary statistics as specified for an optional
variable. The following option will produce volume tables in combination with the
tabulate-command:

summarize(<variable>)

By default, means are shown. However, this can be altered by using the following extra options
in the tabulate-expression:

- mean Mean value (default)
- sum Sum
- std Standard deviation
- p25 25%-quartile
- p50 50%-quartile (= median value)
- p75 75%-quartile
- gini Gini coefficient value
- iqr Interquartile value (range between 75th and 25th percentile)

Example of table showing standard income value (mean) divided by gender:
tabulate gender, summarize(income)

Example of table that shows median value instead of mean value:
tabulate gender, summarize(income) p50

Example of table showing mean income divided by gender and marital status:
tabulate marital_status gender, summarize(income)

79

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Example of volume table showing mean wealth by residence county and gender:

4.2 Summarize and boxplot - metrical statistics

The commands summarize and boxplot are tools for generating summary statistics for
metrical/continuous variables. Like other statistical commands in microdata.no, if-conditions may
be used to generate statistics for sub-populations (trimming of population in advance is not
necessary).

Examples are presented below, showing summary statistics for the variables income and wealth
measured per 2019 and 2018 respectively, where the population is all residents between the
ages 16-66.

The summarize command displays key statistics for the specified numeric variables:

● Average
● Standard deviation
● Number of units with valid value
● First percentage value (upper limit value)
● Internal quartile values (50% = median value)
● Last percentage value (lower limit value)

80

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

It is also possible to display gini coefficient values as well as interquartile values (range between
75th and 25th percentiles) by using resp. the options gini and iqr.

The command boxplot shows a graphical presentation using a standard boxplot (a box
representing the two middle quartiles, plus mean, minimum, and maximum values).

By holding the mouse cursor over the various boxplot areas, the corresponding values will be
shown.

The command boxplot gives the opportunity to show separate figures for specified categories
represented by a custom variable:

boxplot <variable1>, over (variable2)

Example of boxplot measuring income per 2000-01-01 by gender:

81

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

For more information about these commands, use the help summarize or help boxplot
command. This will display syntax examples and a complete list of available options that can be
used to customize the appearance of the statistics generated. For example. the gini option
can be used to display gini coefficient values in addition to the standard summarize result.

82

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.3 Piecharts
The following command are used to produce piecharts for categorical variables:

piechart <variable>

For more information about this command, use the help piechart command. This will
display syntax examples and a complete list of available options that can be used to customize
the appearance of the statistics generated.

By holding the mouse cursor over the various piechart areas, the corresponding figures will be
shown.

83

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.4 Histogram - graphical frequency presentation
Histograms are graphical representations of univariate distributions for continuous variables
(e.g., income). Each bar represents the frequency value for the corresponding predetermined
variable interval. Through the options bin() and width(), it is possible to adjust and specify
the number of bars and the interval width respectively. This is illustrated in the examples below.

The default display shows density as the frequency value. This can also be customized through
options, in order to change the unit of measurement on the y-axis into actual frequency
(number), proportion, or percentage. The following options can be used for: freq,
fraction, percent

People with very high or very low income can easily be identified if the range of values becomes
too narrow, which is problematic in terms of privacy. Therefore, the system performs a top/
bottom coding where the 1% highest and 1% lowest values are replaced by the respective limit
values. Thus, the first and last bars will always be much higher than the neighboring bars, as
illustrated in the examples below. This top/bottom coding is discussed in detail in Appendix C.

By holding the mouse cursor over the various bars in the diagram, the respective bar intervals
and frequency values will be shown.

Example:

Histogram showing income distributed over 6 intervals, and frequency numbers on the y-axis
(each bar has the same income interval width):

84

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Histogram showing income where each interval width are set to 100'000:

Through the option normal, a normal distributed curve is placed over the bars in the figure.
This is helpful to study the degree of deviation from a normal distribution:

85

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Histograms can be displayed over distributions for another variable that must be categorical,
e.g. gender. This is done through the option by(<variable>).

Example:

Like other statistical representations in microdata.no, filtering can be performed through
if-conditions, where the histogram is shown only for a sub-population.

Example showing histogram only for individuals with an income above 100,000 nkr:

86

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

As mentioned, the histogram by default will divide into a predetermined number of bars/
intervals. Through the option discrete, this can be adjusted to display a bar for each
individual value. This is not appropriate for metric variables of economic nature (number of bars
becomes very high). However, for numerical variables with a limited number of values, this
representation is highly recommended. Examples of variables may be age, percentages, or
amounts that are rounded to the nearest 10,000 or 100,000.

Example of using the option discrete for the variable "age" (note that the system also in this
case ensures that the first and last bars are top/bottom coded, since people of very low/high age
are relatively easy to identify):

Histograms that combine bin() and discrete will return a blank diagram or an error
message since these two options are not compatible together.

87

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

For more information about this command, use the help histogram command. This will
display syntax examples and a complete list of available options that can be used to customize
the appearance of the statistics generated.

4.5 Barcharts
The command barchart is a tool for making standard barchart diagrams. A variable or set of
variables need to be specified, in addition to the statistical measurement to be performed. The
option over() makes it possible to distribute the bars over one or more optional categorical
variables, e.g. gender.

Like other microdata.no graphical displays, it is possible to hold the mouse cursor over the
various areas in the diagram to show corresponding values.

Syntax:

barchart(<statistical measure>) <variable list>[, over(<variable list>)]

Stacked barcharts can be made through the option stack.

For more information about this command, use the help barchart command. This will
display syntax examples and a complete list of available options that can be used to customize
the appearance of the statistics generated.

Example of barcharts measuring mean income distributed over gender:

88

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Example of barchart measuring mean income and wealth, distributed over gender:

4.6 Hexbin - anonymized scatterplot
Hexbin diagrams are basically anonymized scatterplots where the two-dimensional area is
divided into a given number of hexagons. The colour of each hexagon represents the density of
observations in the specific interval of x- and y-values. The darker the colour, the more
observations are observed in this particular area.

Hexbin diagrams produce a graphical presentation of the distribution of units between two
continuous variables, and are not suitable for categorical variables.

By holding the mouse cursor over the various areas in the diagram, the corresponding values
will be shown.

Like other statistical presentations, if-conditions may be used in combination with the
hexbin-expression to show diagrams for sub-populations. Also, the number of hexagons and
intervals may be customized through options.

For more information about this command, use the help hexbin command. This will display
syntax examples and a complete list of available options that can be used to customize the
appearance of the statistics generated.

89

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Examples:

90

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.7 Sankey - transition diagrams
Sankey diagrams are a way to visualize transitions between statuses. In microdata.no, this can
be used to get an overview of units' (individual's) movements between two time-measurements,
either for the same variable or for different variables. Movements between different types of
states (e.g. jobsearch status -> job status) can be viewed, or changes in distributions for the
same variable over time (e.g. residence00 -> residence05 or maritalstate00 -> maritalstate05).

The transition visualization requires two categorical cross-sectional variables to be used. The
number of categories should not be too large, as the chart can quickly become unreadable. This
can be solved by converting into fewer categories or by using an if-condition that controls which
transitions to study.

By holding the mouse cursor over a transition field, the corresponding number of units are
shown.

For more information about this command, use the help sankey command. This will display
syntax examples and a complete list of available options that can be used to customize the
appearance of the statistics generated.

Examples:

91

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

92

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

93

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

4.8 Examples
The scripts below can be used to recreate the descriptive statistics examples presented in
section 4. These will also be available as executable scripts in microdata.no.

4.8.1 Tabulate

require no.ssb.fdb:12 as db

create-dataset demographics
import db/INNTEKT_WYRKINNT 2015-01-01 as income
import db/INNTEKT_BRUTTOFORM 2015-01-01 as wealth
import db/BEFOLKNING_KJOENN as gender
import db/BEFOLKNING_FOEDSELS_AAR_MND as birth_year_month
import db/SIVSTANDFDT_SIVSTAND 2015-01-01 as maritalstate15
import db/SIVSTANDFDT_SIVSTAND 2019-01-01 as maritalstate19
import db/BOSATTEFDT_BOSTED 2015-01-01 as residence
import db/BEFOLKNING_STATUSKODE 2015-01-01 as regstat

// Recode from municipality to county level
generate county = substr(residence,1, 2)

// Generate descriptive statistics

// Frequency tabulation - one-way and two-way
// The best way to map out discrete variables is by using frequency tabulations. They show the
number of units within each category, as well as giving an overview of possible categories used by the
specific variable(s). Frequency statistics may be shown not only for single variables through one-way
tabulations, but also for combinations of two or more variables in the same cross-table. This will give
insight of the distribution of frequencies controlled for values of the other variables

define-labels countystring '01' 'Østfold' '02' 'Akershus' '03' 'Oslo' '04' 'Hedmark' '05' 'Oppland' '06'
'Buskerud' '07' 'Vestfold' '08' 'Telemark' '09' 'Aust-Agder' '10' 'Vest-Agder' '11' 'Rogaland' '12'
'Hordaland' '14' 'Sogn and Fjordane' '15' 'Møre and Romsdal' '16' 'Sør-Trøndelag' '17' 'Nord-Trøndelag'
'18' 'Nordland' '19' 'Troms' '20' 'Finnmark' '99' 'Unknown'

assign-labels county countystring

tabulate county
tabulate gender

94

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

tabulate gender regstat
tabulate gender county

// Cross-table with categorical values only (no labels)
tabulate gender regstat county, nolabels

// Cross-table with missing values
tabulate county regstat, missing

// Cross-table only for persons over 30 years
generate age = 2015 - int(birth_year_month/100)
tabulate county regstat if age > 30

// Percentage tabulation
tabulate maritalstate15 maritalstate19, rowpct
tabulate maritalstate15 maritalstate19, colpct
tabulate maritalstate15 maritalstate19, cellpct
tabulate maritalstate15 maritalstate19, rowpct freq

// The tabulate-command may also be used to produce volume tables through a summarize-option.
This will show statistics such as means, sums etc for a specific variable distributed over the
combinations of categories of the chosen tabulate-variables

tabulate county gender, summarize(wealth)

4.8.2 Summarize and boxplot

// Summary statistics for metrical or continuous variables

// The command summarize is used to generate summary statistics for metrical or continuous
variables. Values shown are mean, quartiles a.o. The command boxplot presents the same figures
graphically through a standard boxplot diagram

require no.ssb.fdb:12 as db

create-dataset demographics
import db/INNTEKT_WYRKINNT 2015-01-01 as income
import db/INNTEKT_BRUTTOFORM 2015-01-01 as wealth
import db/BEFOLKNING_KJOENN as gender
import db/BEFOLKNING_FOEDSELS_AAR_MND as birth_year_month
import db/BOSATTEFDT_BOSTED 2015-01-01 as residence

95

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

// Recoding from municipality to county level
generate county = substr(residence,1,2)

// Generate age per 2015
generate age = 2015 - int(birth_year_month/100)

summarize income wealth
summarize wealth if age > 50
summarize wealth if residence == '0301'

boxplot income wealth
boxplot income, over(gender)

4.8.3 Histogram and barchart

// Histogram and barchart

require no.ssb.fdb:12 as db

create-dataset demographics
import db/INNTEKT_WYRKINNT 2015-01-01 as income
import db/INNTEKT_BRUTTOFORM 2015-01-01 as wealth
import db/BEFOLKNING_KJOENN as gender
import db/BEFOLKNING_FOEDSELS_AAR_MND as birth_year_month

// Generate age per 2015
generate age = 2015 - int(birth_year_month/100)

// Histogram (frequency distributions)
// This is a way of presenting frequency distributions for metrical/continuous variables graphically,
where the values are grouped into appropriate intervals and the corresponding frequencies are
represented by bars. The total area of all the bars will sum into 1 by default, unless customized
through options. Options are also a tool for choosing the division of values (number of bars),
displaying a normal distribution curve as reference etc.

histogram income
histogram income, freq
histogram income, fraction
histogram income, percent

histogram income, normal

96

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

histogram income, bin(6) freq
histogram income, width(100000) freq

histogram income, by(gender)
histogram income if income > 100000

// By using a discrete-option, histograms may also illustrate the value distribution for discrete
variables. Each category/value will then be represented by separate bars

histogram age, discrete

// Barcharts
// Such diagrams are useful for statistical presentations of continuous/metrical variables in a lucid
manner. Several variables may be combined in the diagram, in order to break down the numbers
based on categorical characteristics (gender, educational level etc)

barchart (mean) income, over(gender)
barchart (mean) income wealth, over(gender)

4.8.4 Piechart and hexbin-plot

require no.ssb.fdb:12 as db

create-dataset demographics
import db/INNTEKT_WYRKINNT 2015-01-01 as income
import db/INNTEKT_BRUTTOFORM 2015-01-01 as wealth
import db/BEFOLKNING_KJOENN as gender
import db/BEFOLKNING_FOEDSELS_AAR_MND as birth_year_month
import db/BOSATTEFDT_BOSTED 2015-01-01 as residence

// Recoding from municipality to county level
generate county = substr(residence,1,2)

define-labels countystring '01' 'Østfold' '02' 'Akershus' '03' 'Oslo' '04' 'Hedmark' '05' 'Oppland' '06'
'Buskerud' '07' 'Vestfold' '08' 'Telemark' '09' 'Aust-Agder' '10' 'Vest-Agder' '11' 'Rogaland' '12'
'Hordaland' '14' 'Sogn and Fjordane' '15' 'Møre and Romsdal' '16' 'Sør-Trøndelag' '17' 'Nord-Trøndelag'
'18' 'Nordland' '19' 'Troms' '20' 'Finnmark' '99' 'Unknown'

assign-labels county countystring

97

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

// Generate age per 2015
generate age = 2015 - int(birth_year_month/100)

// Piecharts
// This is a useful way of presenting the percentage shares of values for discrete variables graphically

drop if age < 16

piechart gender
piechart county

// Hexbinplot
// This can be seen as an anonymized scatterplot diagram, suitable for continuous/metrical variables,
where the density of the plots are represented by colours (the darker, the more plots in the particular
hexbin)

hexbin wealth income
hexbin wealth income if age > 50

4.8.5 Sankey-diagram

// Transitions diagrams (Sankey)

require no.ssb.fdb:12 as db

create-dataset demographics
import db/SIVSTANDFDT_SIVSTAND 2010-01-01 as maritalstate10
import db/SIVSTANDFDT_SIVSTAND 2015-01-01 as maritalstate15
import db/BOSATTEFDT_BOSTED 2010-01-01 as residence10
import db/BOSATTEFDT_BOSTED 2015-01-01 as residence15

// Recoding from municipality to county level
generate county10 = substr(residence10,1,2)
generate county15 = substr(residence15,1,2)

define-labels countystring '01' 'Østfold' '02' 'Akershus' '03' 'Oslo' '04' 'Hedmark' '05' 'Oppland' '06'
'Buskerud' '07' 'Vestfold' '08' 'Telemark' '09' 'Aust-Agder' '10' 'Vest-Agder' '11' 'Rogaland' '12'
'Hordaland' '14' 'Sogn and Fjordane' '15' 'Møre and Romsdal' '16' 'Sør-Trøndelag' '17' 'Nord-Trøndelag'
'18' 'Nordland' '19' 'Troms' '20' 'Finnmark' '99' 'Unknown'

98

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

assign-labels county10 countystring
assign-labels county15 countystring

sankey county10 county15 if county10 == '12'
sankey county10 county15 if county15 == '03'
sankey county10 county15 if county15 == '03' & county10 != '03'

sankey maritalstate10 maritalstate15
sankey maritalstate10 maritalstate15 if maritalstate10 == '2'

99

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.Advanced analysis
In addition to descriptive functionalities, microdata.no makes it possible to perform advanced
analysis such as regression analysis. Presently, the following advanced analysis tools are
available in microdata.no:

- correlate
- anova
- normaltest
- regress
- ivregress
- oaxaca
- logit / probit
- mlogit
- regress-panel
- predict commands for retrieving prediction and residual values etc.

More functionality will be added consecutively, based on feedback from statistical users. In
principle, all functionality available in Stata may also be implemented in microdata.no.

5.1 Correlate - correlation measures
The command correlate is a tool for analyzing statistical correlations between variables.
Values ranging from -1 to 1 are reported in a correlation matrix for the specified variables, where
minus and plus-values implicate negative and positive correlation respectively. The value 0
indicates no correlation. The closer to +/- 1, the stronger is the estimated correlation.

Syntax:
correlate <variable list> [if <condition>] [, <options>]

If no variable is specified, a correlation matrix for all variables in the dataset is presented.

The following options may be used to present alternative measures:

- covariance Show covariance instead of correlation coefficient
- pairwise Pairwise presentation
- obs Show number of observations behind each correlation coefficient
- sig Show significance value for each correlation coefficient

100

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Examples:

5.2 Anova
Anova-tests can be viewed as a simplified regression analysis, in which the focus lies in
whether the mean value of a dependent continuous variable is different in two or more
independent groups given by another categorical variable. One example is to test whether the
average salary is different for people with low, medium, and high education (using an
independent variable where the level of education is divided into three groups).

An Anova-test can check if there are significant differences between at least two of the groups
(given by the independent variable), but it does not indicate which group(s) this applies to. For
such purposes, regression analyses need to be performed (see section 5.4).

Syntax:
anova <variable> <variable list> [if <condition>] [, <options>]

101

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

If testing two variables only, i.e. one dependent and one independent variable, a one-way
Anova-test is performed. It is also possible to test a dependent variable against two independent
categorical variables, also called a two-way Anova-test.

Example:

5.3 Normal test
The Normal test command runs a selection of normal distribution tests for specified variables, or
entire datasets if no variables are listed. For each test, the parameter value and p-value are
stated. The tests that are run are skewness, kurtosis, s-k (not adjusted), Jarque-Bera and
Shapiro-Wilk.

Syntax:
normaltest <variable list> [if <condition>]

Example of a test for normal distribution for the variable innt19 (occupational income
measured in 2019). P-values lower than 0.05 mean that the distribution is not normally
distributed, and vice versa:

102

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.4 Regress - ordinary least squares estimation
The command regress is a tool for performing ordinary least square estimations (OLS) where
the dependent variable takes continuous/metrical values such as income.

Syntax:
regress <variable> <variable list> [if <condition>] [,

<options>]

The dependent variable must be entered first, followed by the explanatory variables. Options
can be used for various purposes, such as robust or cluster estimation, cf. the sections below.
Like other statistical commands, regression commands can be combined with an if condition to
run regressions on selected groups. For a full list of options, use the help regress
command.

In short, the model involves estimating (possible) marginal effects from a set of independent
variables (explanatory variables) on the dependent variable (response variable). “Marginal
effect” is a measure of how much the dependent variable is estimated to increase in value,
caused by an increase by one unit of measure in the respective independent variable.

The most important thing to look at when interpreting the result of a regression is the
explanatory force of:

a) The model as a whole
b) Each variable

This is done by studying the significance values “Adjusted R2” and “P> | t |” respectively.

Below is an example of the result from a regression analysis performed in microdata.no. The
numbers in the lower part are linked to the different variables, while the numbers at the top refer
to the analysis model as a whole.

103

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Justert R2 (Adjusted R2) is an overall measure of how much of the observed variance in the
dependent variable is explained by the sum of the independent variables. The scale ranges
from 0 to 1, with values near 1 being optimal. In practice, values will never reach 1 when
analyzing socioeconomic individual data due to random noise and unobserved causal
relationships. Typical values will therefore usually be in the range of 0 - 0.5.

The R2 value will always increase for each additional independent variable added to the
regression model. This does not necessarily mean that the model is getting better, especially if
the variables added are not statistical significant. Justert R2 takes this into account and will only
increase in value if the extra variables are significant.

If Justert R2 shows a lower value by adding an additional independent variable, this will indicate
that the selected variable may have a relatively high degree of correlation with some of the other
independent variables, i.e. multicollinearity. This is certainly something you should avoid.

P > |t| or the p-values (in column 4 in the lower regression output table) indicate the probability
that the t-value appears as a result of pure randomness. In order to say that a variable is
significant, the associated p-value must be lower than 0.05 at a 5% significance level. Values
 close to or equal to 0 are ideal.

In short, the value t (column 3) is a standardized measure of the coefficient value (= the
marginal effect), cf. values in the Coef.-column (column 1), where limit values of +/- 1.96
correspond to a 5% significance level. Thus, values exceeding 1.96 with positive or negative
sign will be considered significant at a 5% level (5% level is a common operational limit).

104

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Also the 95% confidence interval values presented in the two rightmost columns in the lower
main table are useful to study, as they are quite intuitive. If the interval includes the value 0, one
can rule out that the coefficient in question shows a significant relationship between the
associated independent variable and the response variable.

The coefficient values in column 1 are only relevant for significant variables, and show the
marginal effect on the response variable of a unit's increase in the value of the associated
independent variable.

The illustration above shows that all variables are significant with a good margin (high t-values).
Alder (Age) has a negative effect on income, while the other variables have a positive effect.
Konst refers to the constant, i.e. the starting value of the response variable when all
independent variables take the value 0, which is of no particular interpretive importance.

5.4.1 Factor variables
Factor variables can be used to automate the recoding of multi-category variables so that they
can be used in a regression expression. In practice, each category minus the reference
category will be represented by separate dummy variables, where the estimates are interpreted
relative to the reference category. The prefix i. is then used in front of the variable name in the
regression expression, and the lowest value is automatically used as the reference value.

Factor variables can also be used to estimate the effects of combinations of values for
categorical variables (in addition to the effect each individual explanatory variable has
separately). The rationale behind this is that certain properties have different effects on the
dependent variable when looking at different groups. For example, the effect of education on
future income may be systematically different for men versus women. In such cases, factor
variables can be useful.

In regression expressions, factor variables and combinations of these are specified in the same
way as in Stata. Thus, the i. prefix is used to indicate that a variable is to be interpreted as
categorical, while the # symbol is used to indicate that all categories except the reference
groups are to be combined and estimated through the respective coefficient estimates. When
using ##, each individual category will also be estimated separately and included in the
regression analysis.

Example:
Linear regression analysis with income19 as the dependent variable. The independent
variables are man, edulevel, and all subgroups of the two variables combined with each other
except the reference group:

105

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

regress income19 i.man i.edulevel edulevel#man

Result:

This alternative expression will give the same result:

regress income19 edulevel##man

The c. prefix can be used to signal that a variable is to be regarded as a continuous variable
(non-categorical). This may be relevant to use in cases where a variable can be interpreted as

106

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

continuous, e.g. level of education. The following expression runs a similar regression as above,
but where education level is considered a continuous variable:

regress income19 i.man c.edulevel edulevel#man

Result:

107

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.4.2 Model diagnostics
It is possible to perform tests of the regression model against the data being analyzed, in order
to check whether the selected model needs to be moderated. This is done by specifying options
for the relevant test parameters to be displayed. The regression result will then include the
parameter values below the main table.

The following options can be used for model testing:

● ov: Ramsey's RESET test for omitted variables. Displays a total F-value with associated
P-value

● vif: Variance inflation factor test for multicollinearity. Displays variance inflation factor
(VIF) values for the independent variables in a table

● het_bp: Breusch-Pagan test for heteroskedasticity. Displays a total chi-square value
with the corresponding P-value

● het_iid: Studentized Breusch-Pagan test for heteroskedasticity. Displays a total
chi-square value with the corresponding P-value (a newer version of the BP test that is
more robust since it does not assume that the residuals are normally distributed)

● het_fstat: F-statistics from the Breusch-Pagan test for heteroskedasticity. Displays a
total F-value with associated P-value. The number of degrees of freedom is not based
on the number of variables in the regression model, but stems from an additional OLS
model that compares residuals and predicted values. Therefore only one degree of
freedom

Example of a test for omitted variables, multicollinearity and heteroskedasticity:

regress income2019 man married age highwealth, ov vif het_bp

108

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Result (retrieves all test parametres):

109

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

There are also other methods in microdata.no to test regression models:

● The correlate command provides pairwise measures of correlation between
individual variables in a table matrix. This can reveal multicollinearity. Section 5.1
reviews this command.

● The regress-predict command provides the opportunity to study e.g. residual and
prediction values. This can be combined with graphical tools such as histogram to
show residual distributions and to check for e.g. normal distribution. The hexbin
command can also display an anonymized 2-way plot. See section 5.4.4 for a review of
this command.

5.4.3 Cluster and robust estimation
The options robust and cluster() are used separately to specify whether one wants resp.
robust or cluster estimation, and will as a result present regression estimates with adjusted
standard deviations for the estimated coefficients. Associated t-, z- and p-values are also
affected. Other values are not affected compared to standard estimation.

Note that robust and cluster can not be used in combination (cluster implies robust
estimation).

Robust estimation can be used where there is a suspicion of problematic outliers or
heteroskedasticity.

Cluster estimation is used when it is suspected that there are systematic dependencies within
groups of observations, e.g. within schools or municipalities. The groups are specified through a
variable (cluster variable) which is included in the parentheses of the cluster option, e.g.
cluster(school) or cluster(municipality). The following conditions apply, otherwise
the system will give an error message:

● The number of groups must be of a certain size
● The cluster variable must be numeric
● The cluster variable cannot be included as a variable in the regression expression.

Examples:
regress income man married high_education, robust
regress income man married high_education,

cluster(municipality)

Robust and cluster options can also be used on other regression types.

110

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.4.4 Prediction and residual values
All regression variants found in microdata.no have associated commands that generate, among
other things, residual and prediction values. These are values that can be used to analyze the
data spread and for testing regression models. Prediction values can also be used as input for
further analyses.

The commands have the same name as the associated regression command plus "-predict"

Syntax:
regress-predict <variable> <variabel list> [if <condition>] [,

<options>]

The variables are specified in the same way as for the corresponding regression model run with
the regress command.

The following values can be retrieved: Prediction values, residuals and "Cook's distance"

You decide which values you want to generate through the use of options. The result of the runs
is a set of variables that contain the different values. By default, the former value type is
generated, but it is still recommended to specify value type through options as this makes you
able to create names for the generated variables inside parentheses as shown in the syntax
example below. If you run several predict commands, you have to create new names for the
automatically generated variables.

Syntax example:

regress-predict wage age man wealth, residuals(res)
predicted(pred) cooksd(cook)

The automatically generated variables can be used as input for further analyses or to be
displayed graphically. Current graphical commands are hexbin and histogram. By running a
histogram on the residual variable, one can check whether the residuals are normally
distributed. The hexbin command can also be used to create anonymized scatter plots where
one combines two sets of values.

For more details, it is recommended to use the help regress-predict command.

111

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.5 IV-regression - linear regression analysis with instrument
variables
If one suspects dependence between independent variables in a linear regression model, the
ivregress command can be used to set up an expression that defines which variables this
applies to.

Syntax:
ivregress <variable> <variable list> (<variable list> =
<variable list>) [if <condition>] [, <options>]

The dependent variable must be entered first, followed by the explanatory variables and the
instrument expression which is indicated in parentheses. Options can be used for various
purposes, such as robust or cluster estimation, cf. the sections below. Like other statistical
commands, regression commands can be combined with an if condition to run regressions on
selected groups. For a full list of possibilities, use the help ivregress command.

Example where one suspects that wealth is related to age and place of residence (= Oslo):

ivregress wage man (highwealth = age oslo)

The result of the run is a standard regression result where the instrument variable and
instruments are listed below the table. In practice, all independent variables are treated as
instruments, except for the variable which is defined as an instrument variable.

Example where highwealth (formuehøy) is instrument variable and age (alder) is
instrument (man is also included as an instrument even if the variable is not specified in the
parentheses expression):

112

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.5.1 Factor variables
See section 5.4.1 for information on how factor variables can be used. The procedure is the
same as for ordinary linear regression.

5.5.2 Model diagnostics
Various diagnostics related to instrument variable modeling are under development and testing,
and will soon be available. This includes standard test estimators for endogeneity, correlation
and overidentification. Until then, the modeling can be tested in the following ways:

● Run regression with and without instrumentation, and compare the result: regress vs.
ivregress

● Use the correlate command to check for correlation between selected variables
● Study residuals a.o. through the ivregress-predict command

5.5.3 Cluster and robust estimation
See section 5.4.3 for information on how to use cluster or robust estimation. The procedure is
the same as for ordinary linear regression.

5.5.4 Prediction and residual values
All regression variants found in microdata.no have associated commands that generate, among
other things, residual and prediction values. These are values that can be used to analyze the
data spread and for testing regression models. Prediction values can also be used as input for
further analyses.

113

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

The commands have the same name as the associated regression command plus "-predict"

Syntax:
ivregress-predict <variable> <variable list> (<variable list> =
<variable list>) [if <condition>] [, <options>]

The variables are set in the same way as for the corresponding regression model run with the
ivregress command.

The following values can be retrieved: Prediction values, and residuals

You decide which values you want to generate through the use of options. The result of the runs
is a set of variables that contain the different values. By default, the former value type is
generated, but it is still recommended to specify value type through options as this makes you
able to create names for the generated variables inside parentheses as shown in the syntax
example below. If you run several predict commands, you have to create new names for the
automatically generated variables.

Syntax example:

ivregress-predict wage man (wealth = age), residuals(res3)
predicted(pred3)

The automatically generated variables can be used as input for further analyses or to be
displayed graphically. Current graphical commands are hexbin and histogram. By running a
histogram on the residual variable, one can check whether the residuals are normally
distributed. The hexbin command can also be used to create anonymized scatter plots where
one combines two sets of values.

For more details, it is recommended to use the help ivregress-predict command.

5.6 Oaxaca - ordinary least squares estimation with
decomposition of group specific effects
The oaxaca command is a tool to measure whether there are systematic differences between
two groups, e.g. men and women, and the differences are further decomposed into an explained
and an unexplained component.

114

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

The command performs a Blinder-Oaxaca decomposition that is used to explain differences in8

the mean value of the dependent variable for two groups. The difference is decomposed into
two components: Explained difference (“between group”) and unexplained effect (coefficient
effect). Similar to the regress command, continuous dependent variables such as e.g. wage
are used. The difference is that you specify the two groups through the by-variable when using
oaxaca.

The by-variable used for grouping must be categorical, but can have both numeric and
alphanumeric value formats. The value that is ranked first (numerically or alphabetically) is
linked to group 1. If the variable contains more than two values, the two values that are ranked
first are used, while the others are kept out of the analysis.

The standard solution used is “three-fold”, and you get the main numbers:

● The difference in the average value of the dependent variable measured for each of the
two groups: mean(group1) – mean(group2)

● Decomposed difference: Explained, unexplained and simultaneous effect
● Number of units belonging to the two respective groups, as well as which value codes

are used

By using the pool option, the system will use a so-called “two-fold pooled” approach where the
decomposition uses the overall average as a reference value (simultaneous effect is not
reported in this approach).

The most common use is to analyse systematic differences in economic variables such as
wages, and compare men against women. But other types of groupings can also be used.

Example of using oaxaca:

8 The method is based on the principles described in Ben Jann's Stata Journal article (2008):
https://www.stata-journal.com/sjpdf.html?articlenum=st0151. The Python implementation used in
microdata.no is described here:
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/stats/oaxaca.py.

115

https://www.stata-journal.com/sjpdf.html?articlenum=st0151
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/stats/oaxaca.py

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Note that the difference in mean value reported by oaxaca differs slightly from the difference
found by using the summarize command on the dependent variable for each of the two
groups. The reason is that descriptive statistics generated through commands like summarize
are subject to winsorization (right and left censorship). Regression results from commands such
as oaxaca, on the other hand, are not winsorized, and show the correct difference.

More information on winsorization and other disclosure protection mechanisms can be found in
appendix C.

116

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.7 Logit and probit - logistic regression analysis
Logistic regression analysis is a tool for estimating the probability of "success" (one condition in
front of another) or to end up in one of several possible states.

Syntax:
logit <variable> <variable list> [if <condition>] [, <options>]
probit <variable> <variable list> [if <condition>] [,
<options>]

The dependent variable must be entered first, followed by the explanatory variables. Options
can be used for various purposes, such as robust or cluster estimation, cf. the sections below.
Like other statistical commands, regression commands can be combined with an if condition to
run regressions on selected groups. For a full list of options, use the help logit or help
probit command.

The commands logit and probit can be used to perform a logistic analysis where the
dependent variable is a categorical variable with 2 possible outcomes (dummy variable).
Examples may be job/non-job, retired/non-retired etc. Logit models assume that the probability
of "success" follows a logarithmic (log) distribution, while the probit variant assumes a normal
distribution. The two distributions are virtually the same, and the results will therefore be
approximately the same. However, Logit is the most widely used model, and that is the one we
focus on in the examples below.

The result of logit provides a table of common values such as coefficients, standard
deviations, z-values, p-values, and confidence intervals. The numbers in the main table are
linked to the different variables, while the numbers at the top refer to the analysis model as a
whole (indicate the model's quality/explanatory power).

Example:

117

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

In the example above, the dependent variable høyinnt (high income) is coded as follows:

generate høyinnt = 0
replace høyinnt = 1 if income05 > 400000

Like ordinary linear regression analysis (see section 5.4), some numbers are more important to
study than others. The P-value, Prob> chi2, indicates how good the statistical model is, i.e. it is
an estimation of the explanatory power of the sum of all independent variables. The closer to 0
the better, and values should be below 0.05.

Pseudo R2 is a variant of Justert R2 (Adjusted R2) reported by ordinary linear regression
analyses, indicating how much of the variance in the response variable is explained by the
independent variables (scale from 0 to 1 where highest possible values are ideal). However, this
overall measure should be interpreted with great caution, as in many cases it indicates a value
that is either artificially high or low. Prob> chi2 is therefore recommended for logistic regression
models.

The p-values of the variables, P > |z|, correspond to P > |t| in ordinary linear regression analysis.
The limit value here is also 0.05 if operating with a significance level of 5% (commonly used).
Reported values below this limit imply that the associated variable is significant at a 5% level.

Studies of z-values or associated p-values give the same conclusions. The z-value is a
standardized version of the coefficient value, which has an expectation equal to 0 and where
values exceeding +/- 1.96 imply that the corresponding variable has a significant influence on
the likelihood of "success". Positive values indicate positive effect, and vice versa.

118

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

The confidence interval given by the two rightmost columns can be interpreted in the same way
as for ordinary linear regression analysis, i.e. if it includes the value 0, this indicates zero
significance.

As can be seen in the example above, all explanatory variables are significant with a good
margin (high z-values). "Alder" (Age) has a negative effect on the probability of ending up in a
high income group, while the other variables have a correspondingly positive effect.
Furthermore, the model's P-value is equal to 0, which shows that we have a good explanatory
model.

5.7.1 Factor variables
See section 5.4.1 for information on how factor variables can be used. The procedure is the
same as for ordinary linear regression.

5.7.2 Marginal effects
The mfx() option is used to specify that marginal effects are to be estimated in addition to the
usual logistic coefficients. This is preferred by many since marginal effects are easier to interpret
than standard estimates.

It is possible to choose between four different types of marginal effects:
● dydx: marginal effect = d(y) / d(x)
● eyex: elasticity value = d(ln(y)) / d(ln(x))
● dyex: semi-elasticity = d(y) / d(ln(x))
● eydx: semi-elasticity = d(ln(y)) / d(x)

By combining the two options mfx() and mfx_at(), you can override the default measure.
The following variants are available:

● mfx_at(overall) (mean of the marginal effects measured over all x values) (default
measure if this option is not used)

● mfx_at(mean) (marginal effect measured at mean value of x)
● mfx_at(median) (marginal effect measured at median value of x)
● mfx_at(zero) (marginal effect measured at 0-value of x)

The mfx_at() option is usually used in combination with mfx(), for example:

logit high_income male married age high_wealth, mfx(dydx)
mfx_at(mean)

119

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

However, you may also just use mfx_at(). Thus, the standard variant mfx(dydx) is used.

The following alternative regression expressions will present the same marginal effect values:

logit high_income male married age high_wealth, mfx(dydx) mfx_at(overall)
logit high_income male married age high_wealth, mfx_at(overall)
logit high_income male married age high_wealth, mfx(dydx)

Example of a logit regression including estimated average marginal effects (most commonly
used). Common logistical estimates are listed first, then the marginal effects:

120

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.7.3 Cluster and robust estimation
See section 5.4.3 for information on how to use cluster or robust estimation. The procedure is
the same as for ordinary linear regression.

5.7.4 Prediction and residual values
All regression variants found in microdata.no have associated commands that generate, among
other things, residual and prediction values. These are values that can be used to analyze the
data spread and for testing regression models. Prediction values can also be used as input for
further analyses.

The commands have the same name as the associated regression command plus "-predict"

Syntax:
logit-predict <variable> <variable list> [if <condition>] [,
<options>]
probit-predict <variable> <variable list> [if <condition>] [,
<options>]

The variables are specified in the same way as for the associated regression model which is run
with the command logit or probit.

The following values can be retrieved:

● logit-predict: Probability values, prediction values, and residuals
● probit-predict: Probability values and prediction values

You decide which values you want to generate through the use of options. The result of the runs
is a set of variables that contain the different values. By default, the former value type is
generated, but it is still recommended to specify value type through options as this makes you
able to create names for the generated variables inside parentheses as shown in the syntax
example below. If you run several predict commands, you have to create new names for the
automatically generated variables.

Syntax example:

logit-predict highwage age man wealth, residuals(res4)
predicted(pred4) probabilities(prob4)

The automatically generated variables can be used as input for further analyses or to be
displayed graphically. Current graphical commands are hexbin and histogram. By running a

121

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

histogram on the residual variable, one can check whether the residuals are normally
distributed. The hexbin command can also be used to create anonymized scatter plots where
one combines two sets of values.

For more details, it is recommended to use the help logit-predict or help
probit-predict command.

5.8 Mlogit - multinomial logistic regression analysis
It is possible to analyze logistic regression models even when the dependent variable has more
than two possible outcomes. Multinomial models can be used for such purposes.

Syntax expression:

mlogit <variable> <variable list> [if <condition>] [,
<options>]

The dependent variable must be entered first, followed by the explanatory variables. Options
can be used for various purposes, such as robust or cluster estimation, cf. the sections below.
Like other statistical commands, regression commands can be combined with an if condition to
run regressions on selected groups. For a full list of options, use the help mlogit command.

In the reported result, the main table is more extensive compared to common (binomial) logistic
models. It contains a set of coefficients, standard errors, z-values etc for each possible outcome
minus the reference outcome. If e.g. three outcomes, only two sets of values are shown, where
all are relative to the reference outcome. Therefore, they need to be interpreted in comparison
with the probability of ending up in the reference outcome. The various reported measures are
reviewed in section 5.7.

Example:

122

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

In the example above, the dependent variable inntgr (income category) is coded as follows:

generate inntgr = 1
replace inntgr = 2 if income05 > 200000
replace inntgr = 3 if income05 > 400000

5.8.1 Factor variables
See section 5.4.1 for information on how factor variables can be used. The procedure is the
same as for ordinary linear regression.

5.8.2 Marginal effects
See section 5.7.2 for information on how marginal effects are estimated. The procedure is the
same as for binary logistics models.

5.8.3 Cluster and robust estimation
See section 5.4.3 for information on how to use cluster or robust estimation. The procedure is
the same as for ordinary linear regression.

123

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.8.4 Prediction and residual values
All regression variants found in microdata.no have associated commands that generate, among
other things, residual and prediction values. These are values that can be used to analyze the
data spread and for testing regression models. Prediction values can also be used as input for
further analyses.

The commands have the same name as the associated regression command plus "-predict"

Syntax:
mlogit-predict <variable> <variable list> [if <condition>] [,
<options>]

The variables are specified in the same way as for the corresponding regression model run with
the mlogit command.

The following values can be retrieved: Probability values and prediction values

You decide which values you want to generate through the use of options. The result of the runs
is a set of variables that contain the different values. By default, the former value type is
generated, but it is still recommended to specify value type through options as this makes you
able to create names for the generated variables inside parentheses as shown in the syntax
example below. If you run several predict commands, you have to create new names for the
automatically generated variables.

Syntax example:

mlogit-predict wagecat age man highwealth, predicted(pred6)
probabilities(prob6)

The automatically generated variables can be used as input for further analyses or to be
displayed graphically. Current graphical commands are hexbin and histogram. By running a
histogram on the residual variable, one can check whether the residuals are normally
distributed. The hexbin command can also be used to create anonymized scatter plots where
one combines two sets of values.

For more details, it is recommended to use the help mlogit-predict command.

124

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.9 Regress-panel - panel data regression analysis
Panel data are datasets where each unit takes values for all variables measured over a
specified set of measurement dates. This has the advantage that time becomes a component in
analyses. In addition, the database becomes much larger, usually leading to analyses of better
quality.

Syntax:
regress-panel <variable> <variable list> [if <condition>] [,
<options>]

The dependent variable must be entered first, followed by the explanatory variables. Options
can be used for various purposes, such as robust or cluster estimation, cf. the sections below.
Like other statistical commands, regression commands can be combined with an if condition to
run regressions on selected groups. For a full list of options, use the help regress-panel
command.

See section 2.4 on how to create datasets for panel data analysis. A syntax script example is
also presented there.

There is a large battery of panel data analyses that can be used, depending on what
assumptions are made about the variability of the various variables over time. Common variants
used are fixed effect and random effect analyses.

In the example below, annual salary (annual wage income) is used as a dependent variable,
and dummy variables for marital status = married, and residence = Oslo are used as
explanatory variables. In addition, five measurement dates are used: December 31. in the years
2011-2015. Population = all persons who completed a master's degree during the autumn
semester 2010.

Example 1: Panel regression with fixed effects

125

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Example 2: Panel regression with random effects (same dataset as example 1)

In addition to regression analyses, it is possible to map out panel data through various
descriptive tools:

- tabulate-panel corresponds to the command tabulate used for regular datasets,
cf. section 4.1, but shows instead values for all measurement dates. Like tabulate,
percentage options can be used. If multiple variables are specified, multi-dimensional
cross tables are displayed for the relevant variables

- summarize-panel corresponds to the command summarize used for regular
datasets, cf. section 4.2, but shows instead values for all measurement dates. Values
 are displayed vertically and not horizontally, and the mouse cursor need to be held over
the respective values to show their meaning

126

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

- transitions-panel shows a two-way matrix containing frequencies/probabilities of
transitions between all combinations of categorical values over time (transition
probabilities), for a given variable. The leading column represents the base values, while
the table header represents the transition values. If multiple variables are specified,
two-way transition tables are displayed for each variable. Transitions are by default
represented by frequencies and percentages (row percentage). Transitions either from
or to missing values (sysmiss) are kept out of the tabulation.

Example 3: Tabulate-panel for “married” and “Oslo” respectively (same dataset as example 1
and 2)

Example 4: Summarize-panel for the dependent variable “yearly salary” (same dataset)

127

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

128

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Example 5: Transitions-panel (transition rates for combinations of categorical values) for the
variables “Oslo” and “married” respectively (same dataset)

Comment on table in example 5:
In 96.21% of the cases, persons not resident in Oslo will have the same condition the following
year (next measurement). The rest, 3.78%, will move to Oslo. Among those in the population
who live in Oslo at a given time, 7.2% will move out of Oslo while 92.8% will remain the
following year (next measurement).

The same principle applies to the variable “gift” (married): Here we see that 5.5% changes the
status from non-married to married from one year to another (next measurement) over the total
measurement period. 2.3% changes status from married to non-married.

129

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.9.1 Factor variables
See section 5.4.1 for information on how factor variables can be used. The procedure is the
same as for ordinary linear regression.

5.9.2 Model diagnostics
It is possible to perform model testing to check whether fixed or random effects estimation
should be used in connection with panel regressions. This is done by using the hausman
command.

Syntax and input follow the same logic as the associated regression command
(regress-panel): The dependent variable is used as the first input, and then the independent
ones are listed.

Example:

regress-panel wage age highedu wealth oslo
hausman wage age highedu wealth oslo

The result of the hausman run is a standard regression result for resp. fixed and random effect
estimation. In addition, the difference between the coefficients in the alternative estimates are
also shown, as well as an aggregate measure that indicates which variant is best to use for the
current data set: P-value based on chi-square diagnostics.

P-values < 0.05 indicate that there are systematic differences in the coefficient estimates and
that fixed effect modeling fits the data best. P-values above this limit indicate the opposite (that
random effect modeling should be used).

For more details, it is recommended to use the help command: help hausman

The regress-panel-predict command can also be used as a tool for model diagnostics,
cf. section 5.9.4.

130

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.9.3 Cluster and robust estimation
See section 5.4.3 for information on how to use cluster or robust estimation. The procedure is
the same as for ordinary linear regression.

5.9.4 Prediction and residual values
All regression variants found in microdata.no have associated commands that generate, among
other things, residual and prediction values. These are values that can be used to analyze the
data spread and for testing regression models. Prediction values can also be used as input for
further analyses.

The commands have the same name as the associated regression command plus "-predict"

Syntax:
regress-panel-predict <variable> <variable list> [if
<condition>] [, <options>]

The variables are specified in the same way as for the corresponding regression model run with
the regress-panel command.

The following values can be retrieved: Prediction values, residuals, and unit effects

You decide which values you want to generate through the use of options. The result of the runs
is a set of variables that contain the different values. By default, the former value type is
generated, but it is still recommended to specify value type through options as this makes you
able to create names for the generated variables inside parentheses as shown in the syntax
example below. If you run several predict commands, you have to create new names for the
automatically generated variables.

Syntax example:

regress-panel-predict wage man age wealth, predicted(ppred1)
residuals(pres1) effects(peff1)

The automatically generated variables can be used as input for further analyses or to be
displayed graphically. Current graphical commands are hexbin and histogram. By running a
histogram on the residual variable, one can check whether the residuals are normally
distributed. The hexbin command can also be used to create anonymized scatter plots where
one combines two sets of values.

For more details, it is recommended to use the help regress-panel-predict command.

131

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

5.10 Example

textblock

Perform regression analysis, and retrieve prediction- and residual values

This example demonstrates the use of the various regression commands, including how to extract

prediction and residual values. Especially histogram is a very useful command that can be used to

study visually the extent to which the residuals are normally distributed. But in principle, all available

and relevant commands may be used for further analysis.

endblock

require no.ssb.fdb:12 as db

create-dataset regressiondata

import db/INNTEKT_WLONN 2019-12-31 as wage

import db/INNTEKT_BER_BRFORM 2019-12-31 as wealth

import db/BEFOLKNING_FOEDSELS_AAR_MND as birthdate

import db/BEFOLKNING_KJOENN as gender

import db/BEFOLKNING_STATUSKODE 2020-01-01 as residentstatus

keep if residentstatus == '1'

generate age = 2019 - int(birthdate/100)

generate male = 0

replace male = 1 if gender == '1'

//regress

regress wage age male wealth

regress-predict wage age male wealth

histogram predicted

hexbin predicted wage

regress-predict wage age male wealth, residuals(res) predicted(pred) cooksd(cook)

regress-predict wage age male, residuals(res2) predicted(pred2) cooksd(cook2)

histogram pred

histogram res

histogram cook

histogram res2

132

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

//ivregress

ivregress wage male (wealth = age)

ivregress-predict wage male (wealth = age), residuals(res3) predicted(pred3)

histogram pred3

histogram res3

//logit

summarize wage wealth

histogram wage

histogram wealth

generate highwage = 0

replace highwage = 1 if wage > 800000

generate highwealth = 0

replace highwealth = 1 if wealth > 4000000

logit highwage age male highwealth

logit-predict highwage age male highwealth, residuals(res4) predicted(pred4) probabilities(prob4)

histogram pred4

histogram res4

histogram prob4

//probit

probit highwage age male highwealth

probit-predict highwage age male highwealth, predicted(pred5) probabilities(prob5)

histogram pred5

histogram prob5

//mlogit

generate wagecat = 0

replace wagecat = 1 if wage > 0

replace wagecat = 2 if wage > 800000

mlogit wagecat age male highwealth

mlogit-predict wagecat age male highwealth, predicted(pred6) probabilities(prob6)

summarize pred6_1

histogram pred6_2

histogram prob6_1

histogram prob6_2

//regress-panel

133

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

sample 0.05 54321

clone-units regressiondata paneldata

use paneldata

import-panel db/INNTEKT_WLONN db/BEFOLKNING_FOEDSELS_AAR_MND db/BEFOLKNING_KJOENN

db/INNTEKT_BER_BRFORM 2017-12-31 2018-12-31 2019-12-31

generate age = 2019 - int(BEFOLKNING_FOEDSELS_AAR_MND/100)

generate male = 0

replace male = 1 if BEFOLKNING_KJOENN == '1'

rename INNTEKT_WLONN wage

rename INNTEKT_BER_BRFORM wealth

regress-panel wage male age wealth

regress-panel wage male age wealth, re

regress-panel-predict wage male age wealth, predicted(ppred1) residuals(pres1) effects(peff1)

regress-panel-predict wage male age wealth, re predicted(ppred2) residuals(pres2) effects(peff2)

histogram ppred1

histogram pres1

histogram peff1

histogram ppred2

histogram pres2

histogram peff2

hausman wage male age wealth

134

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Appendix A: Command overview

Command Formål Type funksjonalitet

clear Clear command session (reset) Support command

edit
Save command session as a script, overwriting the
existing script

Support command

help Help Support command

help-function Help - functions Support command

history Command history Support command

load Load script and execute script Support command

save Save command session as a script Support command

variables Show metadata for registry variables Support command

clone-dataset Duplicate dataset Dataset command

clone-units Duplicate units in a dataset Dataset command

create-dataset Create new and empty dataset Dataset command

delete-dataset Delete dataset Dataset command

rename-dataset Rename dataset Dataset command

reshape-from-panel
Restructure dataset from long/panel format into wide
format

Dataset command

reshape-to-panel
Restructure dataset from wide format into long/panel
format

Dataset command

require Connect to data bank Dataset command

use Use a specific dataset Dataset command

assign-labels Put labels on variables and values Adaptation command

clone-variables Duplicate variables Adaptation command

collapse Collapse/aggregate dataset Adaptation command

define-labels Define list of value-labels Adaptation command

destring Convert from alphanumeric to numeric values Adaptation command

drop Drop variables or records (drop if) Adaptation command

drop-labels Drop value-labels Adaptation command

generate Create a new variable through expression Adaptation command

135

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

import Import variable into dataset Adaptation command

import-event Import event variable into dataset (need to be empty) Adaptation command

import-panel Import panel data into dataset (need to be empty) Adaptation command

keep Keep variables or records (drop the rest) Adaptation command

list-labels Show list of custom value-labels sets Adaptation command

merge

Merge variables from a dataset into another dataset.
Default link key is the unit-identification of the source
dataset, which can be customized via an “on”-option
that make it possible to specify a custom link key

Adaptation command

recode Recode numeric variable Adaptation command

rename Rename variable Adaptation command

replace Recode existing variable through expression Adaptation command

sample Create a random sample from total population Adaptation command

split Split string variables into sub parts Adaptation command

anova Anova/ancova variance analysis Analysis command

barchart Barchart diagram (categorical variables) Analysis command

boxplot Boxplot diagram (numeric variables) Analysis command

ci Confidence interval and standard errors Analysis command

correlate Correlation matrix Analysis command

hausman Hausman test for panel data regression models Analysis command

hexbin Anonymized scatterplot (hexbin plot) Analysis command

histogram Histogram Analysis command

ivregress Linear regression with instrumental variabels Analysis command

ivregress-predict
Generate variabels containing results from a linear
regression with instrumental variabels

Analysis command

logit Logistic regression analysis: Logit Analysis command

logit-predict
Generate variabels containing results from a logit
regression

Analysis command

mlogit Multinomial logistic regression analysis Analysis command

mlogit-predict
Generate variabels containing results from an mlogit
regression

Analysis command

normaltest
Selection of normal distribution tests for variables
specified

Analysis command

oaxaca Oaxaca decomposition of group specific effects Analysis command

piechart Piechart diagram Analysis command

136

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

probit Logistic regression analysis: Probit Analysis command

probit-predict
Generate variabels containing results from a probit
regression

Analysis command

regress Linear regression Analysis command

regress-predict
Generate variabels containing results from an
ordinary linear regression (OLS)

Analysis command

regress-panel Linear regression for panel data Analysis command

regress-panel-predi

ct

Generate variabels containing results from a linear
regression on panel data

Analysis command

sankey Sankey diagram (transitions diagram) Analysis command

summarize Summary statistics (numeric variables) Analysis command

summarize-panel Summary statistics for panel data Analysis command

tabulate
Frequency- and volume tables (categorical
variables)

Analysis command

tabulate-panel Frequency tables for panel data Analysis command

transitions-panel Transition-probabilities for panel data Analysis command

137

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

Appendix B: Function overview

Misc. mathematical functions

❏ ln(arg1)
❏ Description: The natural logarithm of arg1 (the inverse of exp(arg1))
❏ arg1: Positive values
❏ Output: Values between -744 and 709
❏ Examples:

❏ log10(arg1)
❏ Description: The base 10-logarithm of arg1
❏ arg1: Positive values
❏ Output: Values between −323 and 308
❏ Examples:

❏ exp(arg1)

❏ Description: The exponential function (the inverse of ln(arg1))𝑒𝑎𝑟𝑔1

❏ arg1: Values between −8e+307 and 709
❏ Output: Values >= 0
❏ Examples:

❏ sqrt(arg1)
❏ Description: The square root of arg1
❏ arg1: Values >= 0
❏ Output: Values >= 0
❏ Examples:

❏ abs(arg1)
❏ Description: The absolute value of arg1 (i.e. removes negative signs)
❏ arg1: Positive or negative values
❏ Output: Values >= 0
❏ Examples:

138

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ sin(arg1)
❏ Description: Returns the sinus value of arg1
❏ arg1: Positive or negative numbers
❏ Output: Values between -1 and 1
❏ Examples:

❏ cos(arg1)
❏ Description: Returns the cosinus value of arg1
❏ arg1: Positive or negative numbers
❏ Output: Values between -1 and 1
❏ Examples:

❏ tan(arg1)
❏ Description: Returns the tangens value of arg1
❏ arg1: Positive or negative numbers
❏ Output: Positive or negative numbers or missing
❏ Examples:

❏ asin(arg1)
❏ Description: Returns the radian value of the arcsinus of arg1
❏ arg1: Values between -1 and 1
❏ Output: Values between −π/2 and π/2
❏ Examples:

❏ acos(arg1)
❏ Description: Returns the radian value of the arccosinus of arg1
❏ arg1: Values between -1 and 1
❏ Output: Values between 0 and π
❏ Examples:

❏ atan(arg1)
❏ Description: Returns the radian value of the arctangens of arg1
❏ arg1: Positive or negative values
❏ Output: Values between −π/2 and π/2
❏ Examples:

❏ ceil(arg1)
❏ Description: Round upwards to nearest integer
❏ arg1: Positive or negative values
❏ Output: Positive or negative integer values
❏ Examples: ceil(5.2) = 6

ceil(-5.2) = -6

139

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ floor(arg1)
❏ Description: Round downwards to nearest integer. Equal to the function int(arg1)
❏ arg1: Positive or negative values
❏ Output: Positive or negative integer values
❏ Examples: floor(5.8) = 5

floor(-5.8) = -5

❏ int(arg1)
❏ Description: Integer value of arg1 (i.e. drops decimals). Equal to the function

floor(arg1)
❏ arg1: Positive or negative values
❏ Output: Positive or negative integer values
❏ Examples: int(5.8) = 5

int(-5.8) = -5

❏ logit(arg1)
❏ Description: Log value of the odds ratio of arg1 (= ln {arg1/(1-arg1)})
❏ arg1: Values between 0 and 1 (not included)
❏ Output: Positive or negative values or missing
❏ Examples:

❏ lnfactorial(arg1)
❏ Description: The natural logarithm of n-factor (= ln(n!))
❏ n: Integer values >= 0
❏ Output: Values >= 0
❏ Examples:

❏ comb(n,k)
❏ Description: Combinational function value (= n!/{k!(nk)!})
❏ n: Integer values >= 1
❏ k: Integer values between 0 and n
❏ Output: Values >= 0 or missing
❏ Examples:

140

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ round(arg1,arg2)
❏ Description: Rounds to nearest integer if arg2 is not specified or set to 1. arg2 decides

on which level to round arg1
❏ arg1: Positive or negative values
❏ arg2: Positive or negative values (default = 1 if arg2 is dropped)
❏ Output: Positive or negative values
❏ Examples: round(5.2) = 5

round(5.8) = 6
round(5.8,1) = 6
round(5.8,5) = 5
round(5.8,10) = 10
round(5.8621,0.01) = 5.86

❏ quantile(arg1, arg2)
❏ Beskrivelse: Returns value based on the ranking of a continuous value over a selected

division with equal numbers of values in each group. Possible divisions: 2-100. If 100 is
used as an argument, the values 0-99 are returned based on which percentile a value is
in. If the value 10 is used, values are grouped in deciles (0-9)

❏ arg1: Variable with continuous values
❏ arg2: Integer values between 2 and 100
❏ Output: Integer values between 0 and 99
❏ Examples: generate income_p100 = quantile(income,100) (generates percentiles)

generate income_p10 = quantile(income,10) (generates deciles)
generate income_p4 = quantile(income,4) (generates quartiles)

Row calculations (based on two or more variables)

❏ rowmin(arg1, arg2,… .., argn)
❏ Description: Retrieves the minimum value of arg1, arg2,… .., argn for the given unit.

Returns missing value if at least one of the arguments contains missing.
❏ arg1, arg2,… .., argn: Numeric values or variables with numeric values
❏ Output: Numeric values or missing
❏ Examples: generate min_value = rowmin(1,2,3,4)

generate min_income = rowmin(income18, income19, income20)

141

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ rowmax(arg1, arg2,… .., argn)
❏ Description: Retrieves the maximum value of arg1, arg2,… .., argn for the given unit.

Returns missing value if at least one of the arguments contains missing.
❏ arg1, arg2,… .., argn: Numeric values or variables with numeric values
❏ Output: Numeric values or missing
❏ Examples: generate max_value = rowmax(1,2,3,4)

generate max_income = rowmax(income18, income19, income20)

❏ rowmean(arg1, arg2,… .., argn)
❏ Description: Retrieves the average value of arg1, arg2,… .., argn for the given unit.

Returns missing value if at least one of the arguments contains missing.
❏ arg1, arg2,… .., argn: Numeric values or variables with numeric values
❏ Output: Numeric values or missing
❏ Examples: generate mean_value = rowmean(1,2,3,4)

generate mean_income = rowmean(income18, income19, income20)

❏ rowmedian(arg1, arg2,… .., argn)
❏ Description: Retrieves the median value of arg1, arg2,… .., argn for the given unit.

Returns missing value if at least one of the arguments contains missing.
❏ arg1, arg2,… .., argn: Numeric values or variables with numeric values
❏ Output: Numeric values or missing
❏ Examples: generate median_value = rowmedian(1,2,3,4)

generate median_income = rowmedian(income18, income19, income20)

❏ rowstd(arg1, arg2,… .., argn)
❏ Description: Retrieves the standard deviation of arg1, arg2,… .., argn for the given

unit. Returns missing value if at least one of the arguments contains missing.
❏ arg1, arg2,… .., argn: Numeric values or variables with numeric values
❏ Output: Numeric values or missing
❏ Examples: generate std_value = rowstd(1,2,3,4)

generate std_income = rowstd(income18, income19, income20)

❏ rowtotal(arg1, arg2,… .., argn)
❏ Description: Retrieves the sum of arg1, arg2,… .., argn for the given unit. Returns

missing value if at least one of the arguments contains missing.
❏ arg1, arg2,… .., argn: Numeric values or variables with numeric values
❏ Output: Numeric values or missing
❏ Examples: generate sum_value = rowtotal(1,2,3,4)

generate sum_income = rowtotal(income18, income19, income20)

142

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ rowmissing(arg1, arg2,… .., argn)
❏ Description: Retrieves the number of missing values among arg1, arg2,… .., argn for

the given unit.
❏ arg1, arg2,… .., argn: Numeric or alphanumeric values, or variables with numeric or

alphanumeric values
❏ Output: Numeric values
❏ Examples: generate miss_value = rowmissing(1,2,3,4)

generate miss_income = rowmissing(income18, income19, income20)

❏ rowvalid(arg1, arg2,… .., argn)
❏ Description: Retrieves the number of valid values among arg1, arg2,… .., argn for the

given unit.
❏ arg1, arg2,… .., argn: Numeric or alphanumeric values, or variables with numeric or

alphanumeric values
❏ Output: Numeric values
❏ Examples: generate valid_value = rowvalid(1,2,3,4)

generate valid_income = rowvalid(income18, income19, income20)

❏ rowconcat(arg1, arg2,… .., argn)
❏ Description: Merges arg1, arg2,… .., argn for the given unit.
❏ arg1, arg2,… .., argn: Numeric or alphanumeric values, or variables with numeric or

alphanumeric values
❏ Output: Numeric or alphanumeric values
❏ Examples: generate concat_value = rowconcat(1,2,3,4)

generate full_name = rowconcat('Jim ','Smith')
generate full_name = rowconcat(var1, var2)

String functions

❏ string(arg1)
❏ Description: Converts arg1 into string format
❏ arg1: Positive or negative values or missing
❏ Output: arg1 converted into string format
❏ Examples: string(1234567) = '1234567'

143

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ upper(arg1)
❏ Description: Converts text/string into uppercase (ASCII) (unicode characters outside

the ASCII range are ignored)
❏ arg1: String values
❏ Output: String values converted into uppercase
❏ Examples: upper('abcde') = 'ABCDE'

upper('abcdé') = 'ABCDé'

❏ lower(arg1)
❏ Description: Converts text/string into lowercase (ASCII) (unicode characters outside

the ASCII range are ignored)
❏ arg1: String values
❏ Output: String values converted into lowercase
❏ Examples: lower('ABCDE') = 'abcde'

lower('ABCDÉ') = 'abcdÉ'

❏ ltrim(arg1)
❏ Description: Removes leading blank characters (space) from text
❏ arg1: String values
❏ Output: String values without leading blanks
❏ Examples: trim(' this') = 'this'

❏ rtrim(arg1)
❏ Description: Removes blank characters (space) from the end of the text
❏ arg1: String values
❏ Output: String values without blank characters at the end
❏ Examples: trim('this ') = 'this'

❏ trim(arg1)
❏ Description: Removes blank characters (space) from the start and end of text value
❏ arg1: String values
❏ Output: String values without leading blanks or blank characters at the end
❏ Examples: trim(' this ') = 'this'

❏ length(arg1)
❏ Description: Returns the number of characters in a text value (ASCII) (note: for

unicode characters outside the ASCII range the number of bytes is returned instead)
❏ arg1: String values
❏ Output: Integers >= 0
❏ Examples: length('ab') = 2

144

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ substr(arg1,arg2,arg3)
❏ Description: Returns subpart of text starting with position arg2 and with length arg3
❏ arg1: String values
❏ arg2: Integer >=1 and <= -1 (negative values => the position is relative to the

position of the last character)
❏ arg3: Integers >= 1
❏ Output: Subpart of arg1
❏ Examples: substr('y32ssx',2,3) = '32s'

substr('y32ssx',-3,2) = 'ss'
substr('y32ssx',1,1) = 'y'

Sysmiss

❏ sysmiss(arg1)
❏ Description: Logical function set to “true” if the variable arg1 takes the value “missing”

(= no valid observations in the dataset)
❏ arg1: Variable (all types)
❏ Output: “true” or “false”
❏ Examples: generate variable1 = 0 if sysmiss(variable2)

Density functions

❏ ibeta(arg1,arg2,arg3)
❏ Description: Returns a value from the cumulative beta-distribution with shape

parameters arg1 and arg2, also called the regularized incomplete beta function or the
incomplete beta function ratio (ibeta() = 0 if arg3 < 0, ibeta() = 1 if arg3 > 1)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Positive or negative values (relevant values: 0 <= arg3 <= 1)
❏ Output: Values between 0 and 1
❏ Examples:

145

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ betaden(arg1,arg2,arg3)
❏ Description: Returns a value from the probability density of the beta-distribution with

shape parameters arg1 and arg2 (betaden() = 0 if arg3 < 0 eller arg3 > 1)
❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Positive or negative values (relevant values: 0 <= arg3 <= 1)
❏ Output: Values >= 0
❏ Examples:

❏ ibetatail(arg1,arg2,arg3)
❏ Description: Returns a value from the opposite cumulative beta-distribution with shape

parameters arg1 and arg2, also called the complementary incomplete beta function
(ibetatail() = 1 if arg3 < 0, ibetatail() = 0 if arg3 > 1)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Positive or negative values (relevant values: 0 <= arg3 <= 1)
❏ Output: Values between 0 and 1
❏ Examples:

❏ invibeta(arg1,arg2,arg3)
❏ Description: Returns a value from the inverse cumulative beta-distribution with shape

parameters arg1 and arg2
❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Values between 0 and 1
❏ Output: Values between 0 and 1
❏ Examples:

❏ invibetatail(arg1,arg2,arg3)
❏ Description: Returns a value from the inverse opposite cumulative beta-distribution

with shape parameters arg1 and arg2 (ibetatail(a,b,x) = p => invibetatail(a,b,p) = x)
❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Values between 0 and 1
❏ Output: Values between 0 and 1
❏ Examples:

146

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ binomial(arg1,arg2,arg3)
❏ Description: Returns the probability of observing floor(arg2) or less successes in

floor(arg1) tries with the probability of success in one try set to arg3. binomial() = 0 if
arg2 < 0. binomial() = 1 if arg2 > arg1

❏ arg1: Values >= 0
❏ arg2: Positive or negative values (relevant values: 0 <= arg2 < arg1)
❏ arg3: Values between 0 and 1
❏ Output: Values between 0 and 1
❏ Examples:

❏ binomialp(arg1,arg2,arg3)
❏ Description: Returns the probability of observing floor(arg2) successes in floor(arg1)

tries with the probability of success in one try set to arg3
❏ arg1: Values between 1 and 1e+6
❏ arg2: Values between 0 and arg1
❏ arg3: Values between 0 and 1
❏ Output: Values between 0 and 1
❏ Examples:

❏ binomialtail(arg1,arg2,arg3)
❏ Description: Returns the probability of observing floor(arg2) or more successes in

floor(arg1) tries with the probability of success in one try set to arg3. binomialtail() = 1 if
arg2 < 0. binomialtail() = 0 if arg2 > arg1

❏ arg1: Values >= 0
❏ arg2: Positive or negative values (relevant values: 0 <= arg2 < arg1)
❏ arg3: Values between 0 and 1
❏ Output: Values between 0 and 1
❏ Examples:

❏ chi2(arg1,arg2)
❏ Description: Returns a value from the cumulative chisquare-distribution with arg1

degrees of freedom (chi2() = 0 if arg2 < 0)
❏ arg1: Positive values
❏ arg2: Positive or negative values (relevant values: arg2 >= 0)
❏ Output: Values between 0 and 1
❏ Examples:

147

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ chi2den(arg1,arg2)
❏ Description: Returns a value from probability density of the chisquare-distribution with

arg1 degrees of freedom (chi2den() = 0 if arg2 < 0)
❏ arg1: Positive values
❏ arg2: Positive or negative values (relevant values: arg2 >= 0)
❏ Output: Values >= 0
❏ Examples:

❏ chi2tail(arg1,arg2)
❏ Description: Returns a value from the opposite cumulative chisquare-distribution with

arg1 degrees of freedom (chi2tail() = 1 if arg2 < 0). chi2tail() = 1 − chi2()
❏ arg1: Positive values
❏ arg2: Positive or negative values (relevant values: arg2 >= 0)
❏ Output: Values between 0 and 1
❏ Examples:

❏ invchi2(arg1,arg2)
❏ Description: Returns a value from the inverse of the cumulative chisquare-distribution

with arg1 degrees of freedom (chi2(arg1,arg2) = p => invchi2(arg1,p) = arg2)
❏ arg1: Positive values
❏ arg2: Values between 0 and 1
❏ Output: Values >= 0
❏ Examples:

❏ invchi2tail(arg1,arg2)
❏ Description: Returns a value from the inverse of the opposite cumulative

chisquare-distribution with arg1 degrees of freedom (chi2tail(arg1,arg2) = p =>
invchi2tail(arg1,p) = arg2)

❏ arg1: Positive values
❏ arg2: Values between 0 and 1
❏ Output: Values >= 0
❏ Examples:

❏ nchi2(arg1,arg2,arg3)
❏ Description: Returns a value from the cumulative non-centered chisquare-distribution

with arg1 degrees of freedom and center parameter arg2 (noncentral parameter), where
arg3 is chisquare value (nchi2() = 0 if arg3 < 0)

❏ arg1: Values between 2e–10 and 1e+6
❏ arg2: Values between 0 and 10000
❏ arg3: Positive or negative values (relevant values: arg3 >= 0)
❏ Output: Values between 0 and 1
❏ Examples:

148

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ nchi2den(arg1,arg2,arg3)
❏ Description: Returns a value from the probability density of the non-centered

chisquare-distribution with arg1 degrees of freedom and center parameter arg2
(noncentral parameter), where arg3 is chisquare value (nchi2den() = 0 if arg3 < 0)

❏ arg1: Values between 2e–10 and 1e+6
❏ arg2: Values between 0 and 10000
❏ arg3: Positive or negative values (relevant values: arg3 >= 0)
❏ Output: Values >= 0
❏ Examples:

❏ nchi2tail(arg1,arg2,arg3)
❏ Description: Returns a value from the opposite cumulative non-centered

chisquare-distribution with arg1 degrees of freedom and center parameter arg2
(noncentral parameter), where arg3 is chisquare value (nchi2tail() = 1 if arg3 < 0)

❏ arg1: Values between 2e–10 and 1e+6
❏ arg2: Values between 0 and 10000
❏ arg3: Positive or negative values (relevant values: arg3 >= 0)
❏ Output: Values between 0 and 1
❏ Examples:

❏ t(arg1,arg2)
❏ Description: Returns a value from the cumulative Student's t-distribution with arg1

degrees of freedom
❏ arg1: Positive values
❏ arg2: Positive or negative values
❏ Output: Values between 0 and 1
❏ Examples:

❏ tden(arg1,arg2)
❏ Description: Returns a value from probability density of Student's t-distribution with

arg1 degrees of freedom
❏ arg1: Positive values
❏ arg2: Positive or negative values
❏ Output: Values between 0 and 0.39894 . . .
❏ Examples:

149

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ ttail(arg1,arg2)
❏ Description: Returns a value from the opposite cumulative Student's t-distribution with

arg1 degrees of freedom
❏ arg1: Positive values
❏ arg2: Positive or negative values
❏ Output: Values between 0 and 1
❏ Examples:

❏ invt(arg1,arg2)
❏ Description: Returns a value from the inverse cumulative Student's t-distribution with

arg1 degrees of freedom (t(arg1,arg2) = p => invt(arg1,p) = arg2)
❏ arg1: Positive values
❏ arg2: Values between 0 and 1
❏ Output: Positive or negative values
❏ Examples:

❏ invttail(arg1,arg2)
❏ Description: Returns a value from the inverse opposite cumulative Student's

t-distribution with arg1 degrees of freedom (ttail(arg1,arg2) = p => invttail(arg1,p) = arg2)
❏ arg1: Positive values
❏ arg2: Values between 0 and 1
❏ Output: Positive or negative values
❏ Examples:

❏ nt(arg1,arg2,arg3)
❏ Description: Returns a value from the cumulative non-centered Student's t-distribution

with arg1 degrees of freedom and center parameter arg2 (nt(arg1,0,arg3) = t(arg1,arg3))
❏ arg1: Positive values
❏ arg2: Values between -1000 and 1000
❏ arg3: Positive or negative values
❏ Output: Values between 0 and 1
❏ Examples:

❏ ntden(arg1,arg2,arg3)
❏ Description: Returns a value from the probability density of the non-centered Student's

t-distribution with arg1 degrees of freedom and center parameter arg2
❏ arg1: Positive values
❏ arg2: Values between -1000 and 1000
❏ arg3: Positive or negative values
❏ Output: Values between 0 and 0.39894 . . .
❏ Examples:

150

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ nttail(arg1,arg2,arg3)
❏ Description: Returns a value from the opposite cumulative non-centered Student's

t-distribution with arg1 degrees of freedom and center parameter arg2
❏ arg1: Positive values
❏ arg2: Values between -1000 and 1000
❏ arg3: Positive or negative values
❏ Output: Values between 0 and 1
❏ Examples:

❏ invnttail(arg1,arg2,arg3)
❏ Description: Returns a value from the inverse opposite cumulative non-centered

Student's t-distribution with arg1 degrees of freedom and center parameter arg2
(nttail(arg1,arg2,arg3) = p => invnttail(arg1,arg2,p) = arg3)

❏ arg1: Values between 1 and 1e+6
❏ arg2: Values between -1000 and 1000
❏ arg3: Values between 0 and 1
❏ Output: Positive or negative values
❏ Examples:

❏ F(arg1,arg2,arg3)
❏ Description: Returns a value from the cumulative F-distribution with arg1 and arg2

degrees of freedom in the numerator and denominator respectively (F() = 0 if arg3 < 0)
❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Positive or negative values (relevant values: arg3 >= 0)
❏ Output: Values between 0 and 1
❏ Examples:

❏ Fden(arg1,arg2,arg3)
❏ Description: Returns a value from the probability density of the F-distribution with arg1

and arg2 degrees of freedom in numerator and denominator respectively (Fden() = 0 if
arg3 < 0)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Positive or negative values (relevant values: arg3 >= 0)
❏ Output: Values >= 0
❏ Examples:

151

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ Ftail(arg1,arg2,arg3)
❏ Description: Returns a value from the opposite cumulative F-distribution with arg1 and

arg2 degrees of freedom in numerator and denominator respectively (Ftail() = 1 - F(),
Ftail() = 1 if arg3 < 0)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Positive or negative values (relevant values: arg3 >= 0)
❏ Output: Values between 0 and 1
❏ Examples:

❏ invF(arg1,arg2,arg3)
❏ Description: Returns a value from the inverse cumulative F-distribution with arg1 and

arg2 degrees of freedom in numerator and denominator respectively (F(arg1,arg2,arg3)
= p => invF(arg1,arg2,p) = arg3)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Values between 0 and 1
❏ Output: Values >= 0
❏ Examples:

❏ invFtail(arg1,arg2,arg3)
❏ Description: Returns a value from the inverse opposite cumulative F-distribution with

arg1 and arg2 degrees of freedom in numerator and denominator respectively
(Ftail(arg1,arg2,arg3) = p => invFtail(arg1,arg2,p) = arg3)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Values between 0 and 1
❏ Output: Values >= 0
❏ Examples:

❏ nF(arg1,arg2,arg3,arg4)
❏ Description: Returns a value from the cumulative non-centered F-distribution with arg1

and arg2 degrees of freedom in numerator and denominator respectively, and center
parameter arg3 (nF(arg1,arg2,0,arg4) = F(arg1,arg2,arg4), nF() = 0 if arg4 < 0)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Values between 0 and 10000
❏ arg4: Positive or negative values (relevant values: arg4 >= 0)
❏ Output: Values between 0 and 1
❏ Examples:

152

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ nFden(arg1,arg2,arg3,arg4)
❏ Description: Returns a value from the probability density of the non-centered

F-distribution with arg1 and arg2 degrees of freedom in numerator and denominator
respectively, and center parameter arg3 (nFden(arg1,arg2,0,arg4) =
Fden(arg1,arg2,arg4), nFden() = 0 if arg4 < 0)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Values between 0 and 1000
❏ arg4: Positive or negative values (relevant values: arg4 >= 0)
❏ Output: Values >= 0
❏ Examples:

❏ nFtail(arg1,arg2,arg3,arg4)
❏ Description: Returns a value from the opposite cumulative non-centered F-distribution

with arg1 and arg2 degrees of freedom in numerator and denominator respectively, and
center parameter arg3 (nFtail() = 1 if arg4 < 0)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Values between 0 and 1000
❏ arg4: Positive or negative values (relevant values: arg4 >= 0)
❏ Output: Values between 0 and 1
❏ Examples:

❏ invnFtail(arg1,arg2,arg3,arg4)
❏ Description: Returns a value from the inverse opposite cumulative non-centered

F-distribution with arg1 and arg2 degrees of freedom in numerator and denominator
respectively, and center parameter arg3 (nFtail(arg1,arg2,arg3,arg4) = p =>
invnFtail(arg1,arg2,arg3,p) = arg4)

❏ arg1: Positive values
❏ arg2: Positive values
❏ arg3: Values between 0 and 1000
❏ arg4: Values between 0 and 1
❏ Output: Values >= 0
❏ Examples:

❏ normal(arg1)
❏ Description: Returns a value from the cumulative standardized normal distribution
❏ arg1: Positive or negative values
❏ Output: Values between 0 and 1
❏ Examples:

153

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ normalden(arg1,arg2,arg3)
❏ Description: Returns a value from the normal distribution with mean value arg2 and

standard deviation arg3
❏ arg1: Positive or negative values
❏ arg2: Positive or negative values
❏ arg3: Positive values
❏ Output: Values >= 0
❏ Examples:

Date functions
Dates in microdata.no utilize a date format that indicates the number of days measured from
01.01.1970. This makes it trivial to measure the number of days between two dates, and to
calculate duration in a state (duration = stop date - start date).

The date functions listed below can be used to convert from built-in date format to more intuitive
values, such as year, month, day of the week, etc.

❏ date(arg1, arg2, arg3)
❏ Description: Converts from set date to built-in date format (number of days from

01.01.1970)
❏ arg1: Year (4 digits)
❏ arg2: Month (1-12)
❏ arg3: Day (1-31)
❏ Output: Built-in date format (number of days from 01.01.1970)
❏ Examples:

❏ date(2015,12,31) = 16800
❏ date(1970,1,1) = 0
❏ date(1967,5,27) = -950

❏ year(arg1)
❏ Description: Retrieves year from date value. Can be used on start and stop variables to

convert from built-in date value format (1970-01-01 = 0)
❏ arg1: Date value variable (START@<variable name> or STOP@<variable name>)
❏ Output: Year corresponding to date value
❏ Examples:

❏ year(16800) = 2015
❏ year(0) = 1970
❏ year(-950) = 1967

154

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ month(arg1)
❏ Description: Retrieves month from date value. Can be used on start and stop variables

to convert from built-in date value format (1970-01-01 = 0)
❏ arg1: Date value variable (START@<variable name> or STOP@<variable name>)
❏ Output: Month corresponding to date value (1-12)
❏ Examples:

❏ month(16800) = 12
❏ month(0) = 1
❏ month(-950) = 5

❏ day(arg1)
❏ Description: Retrieves day in month from date value. Can be used on start and stop

variables to convert from built-in date value format (1970-01-01 = 0)
❏ arg1: Date value variable (START@<variable name> or STOP@<variable name>)
❏ Output: Day in month corresponding to date value (1-31)
❏ Examples:

❏ day(16800) = 31
❏ day(0) = 1
❏ day(-950) = 27

❏ dow(arg1)
❏ Description: Retrieves weekday from date value. Can be used on start and stop

variables to convert from built-in date value format (1970-01-01 = 0)
❏ arg1: Date value variable (START@<variable name> or STOP@<variable name>)
❏ Output: Weekday corresponding to date value (1-7) (1 = monday, 2 = tuesday etc)
❏ Examples:

❏ dow(16800) = 4
❏ dow(0) = 4
❏ dow(-950) = 6

❏ doy(arg1)
❏ Description: Retrieves day of year from date value. Can be used on start and stop

variables to convert from built-in date value format (1970-01-01 = 0)
❏ arg1: Date value variable (START@<variable name> or STOP@<variable name>)
❏ Output: Day of year corresponding to date value (1-366)
❏ Examples:

❏ doy(16800) = 365
❏ doy(0) = 1
❏ doy(-950) = 147

155

User Guide for microdata.no - developed by Sikt and SSB. Updated per July 2022

❏ week(arg1)
❏ Description: Retrieves week number from date value. Can be used on start and stop

variables to convert from built-in date value format (1970-01-01 = 0)
❏ arg1: Date value variable (START@<variable name> or STOP@<variable name>)
❏ Output: Week number corresponding to date value (1-53)
❏ Examples:

❏ week(16800) = 53
❏ week(0) = 1
❏ week(-950) = 21

❏ quarter(arg1)
❏ Description: Retrieves quarter from date value. Can be used on start and stop variables

to convert from built-in date value format (1970-01-01 = 0)
❏ arg1: Date value variable (START@<variable name> or STOP@<variable name>)
❏ Output: Quarter corresponding to date value (1-4)
❏ Examples:

❏ quarter(16800) = 4
❏ quarter(0) = 1
❏ quarter(-950) = 2

❏ halfyear(arg1)
❏ Description: Retrieves value for first or second half of year from date value. Can be used

on start and stop variables to convert from built-in date value format (1970-01-01 = 0)
❏ arg1: Date value variable (START@<variable name> or STOP@<variable name>)
❏ Output: First or second half of year corresponding to date value (1-2)
❏ Examples:

❏ halfyear(16800) = 2
❏ halfyear(0) = 1
❏ halfyear(-950) = 1

❏ isoformatdate(arg1)
❏ Description: Converts from date value to the YYYY-MM-DD format. Can be used on start

and stop variables to convert from built-in date value format (1970-01-01 = 0)
❏ arg1: Date value variable (START@<variable name> or STOP@<variable name>)
❏ Output: Date on the YYYY-MM-DD format (string value)
❏ Examples:

❏ isoformatdate(16800) = '2015-12-31'
❏ isoformatdate(0) = '1970-01-01'
❏ isoformatdate(-950) = '1967-05-27'

156

Appendix C: Confidentiality in microdata.no

Background

The Act on Official Statistics and Statistics Norway (LOV-2019-06-21-32) § 14 (access to

information for statistical results and analyzes) section (5) states that “The duty of

confidentiality pursuant to § 8 applies correspondingly to the person who has access to

information". Such data can only be provided to researchers in approved research

institutions or to public authorities. Therefore, strict requirements are imposed on the

supply of data for research and an application for access to microdata for research is a

long process. You can find the criteria for applying for access to research data for

research at Statistics Norway's pages on data for research.

The microdata.no analysis system is designed to make it possible to access microdata from

registers without having to go through the lengthy application process for obtaining data. But

it is a condition for such a simplification that the security and confidentiality of the microdata

are as well taken care of as when delivered, preferably better. It has therefore been an

explicit requirement from the outset that users should not be able to view microdata or

otherwise be able to disclose information about individuals. When Statistics Norway

publishes official statistics, this is aggregated data. Nevertheless, Statistics Norway must

make sure through various types of measures that it is not possible to disclose information

about individuals or other types of statistical units to which the statistics relate.

The results/output that microdata.no produces for its users (tables or analyzes) are, like

Statistics Norway's statistics, aggregated data. But without limitations, a user of microdata.no

could easily produce tables and other types of statistical results that Statistics Norway would

not be able to publish. To prevent this from happening, several types of measures have been

introduced that will limit the possibilities of being able to disclose information that should be

confidential.

This appendix will describe the measures implemented to safeguard confidentiality in

microdata.no. The measures are based on scenarios on how the confidentiality of

microdata.no can be attacked or accidentally compromised. These scenarios will not be

described. Emphasis will however be placed on what is necessary, in order for the user to

understand the measures implemented and properly relate to the statistical results.

The measures described below are those that have been implemented so far. There will be

more measures added over time or even adjustments to the measures described below. This

appendix will be updated when changes occur.

Measure 1: Minimum population size

It is not allowed to define populations with fewer than 1000 people. Attempts to define such

will be met with an error message of the type

http://www.ssb.no/omssb/tjenester-og-verktoy/data-til-forskning

Measure 2: Winsorisation

Winsorisation is a technique often used in analyzes to prevent extreme observations from

having too much influence on the analysis results. The technique is applied to all numerical

variables and consists of cutting the distribution at both ends by specific percentiles. We use

2% winsorisation which means that the 1% highest values are set to the 99-percentile (lower

limit value) and the 1% lowest values are set to the 1-percentile (upper limit value). This only

happens when displaying statistical results, based on the current population from which the

statistics are calculated.

The distributions for many numerical statistical variables will be skewed, typically with long

tails at the upper end (e.g. income or wealth). Therefore, winsorization will affect average

and standard deviations to a certain degree. Both types of statistics will typically be

estimated too low. On the other hand, medians, quartiles and other percentiles will not be

affected.

Example: Consider the following script where the goal is to create descriptive statistics and

histograms for the age distribution of the population as of 2010.

import BEFOLKNING_FOEDSELS_AAR_MND as faarmnd
generate faar = floor(faarmnd/100)
drop faarmnd
generate alder2010 = 2010 - faar
summarize alder2010
histogram alder2010, discrete
Note: faarmnd = birth year and month (YYYYMM), and alder2010 = age per 2010

The result will look like this:

summarize alder2010

Variabel mean std count 1% 25% 50% 75% 99%

alder2010 38.7467 22.681 255743 1 21 37 55 89

Anyone older than 89 years will be set to 89, and 0 year olds will be set to 1 year. This is the

cause of the large bar to the right of the histogram. We are aware that the winsorisation can

create problems when studying the elders. The same applies to studies of other groups that

are defined by belonging to the tail in the distribution for a numerical variable.

Winsorisation affects all statistics, and graphical plots, and prevents the most extreme values

from being visible.

Results produced through regression analyzes are not to be considered as personally

identifiable information. Such analyzes therefore use the underlying non-winsorized data.

Regression estimates will therefore not be affected by winsorization.

Measure 3: Randomized noise

All counts of the number of units in a dataset that are shown related to various operations, or

statistical counts presented through commands such as tabulate or summarize are noise-

inflicted. Summations of numerical statistics variables associated with the units in a table cell,

such as income, will be adjusted proportionally to the noise factor so that average numbers

are unaffected. Where the random noise results in the number of units behind the sum being

0, the sum is set to 0 and the average, which then becomes 0/0 is set to NaN.

Let 𝑛 be the original number without noise (for example in a table cell), and 𝑋 is the noise

(stochastic, integer). Then microdata.no will show the noise-inflicted number

 𝑌 = 𝑋 + 𝑛

The random noise is defined by statistical distributions with the following requirements:

1. The smallest positive number to be displayed in counts, 𝑌, should be 5. Numbers 1-4

should not be shown in the tables. But 𝑌 = 0 may occur

2. No counts (numbers) should be noise-inflicted by more than ± 5, i.e. −5 ≤ 𝑋 ≤ 5.

3. It should not be possible to repeat the same count several times within the framework of

the same population and get different results. In this sense, the random noise is constant.

4. It must not be possible to distinguish between true zeros and zeros resulting from noise

infliction.

5. The noise is stochastic with expectation 0, 𝐸(𝑋) = 0.
6. Under conditions 1-3 and 5, the noise distribution that generates 𝑋 should be a maximum

entropy distribution, i.e. if 𝑝(𝑥) = 𝑃(𝑋 = 𝑥), −5 ≤ 𝑥 ≤ 5, then 𝑝(𝑥) should maximize

ℰ(𝑝|𝑛) = − ∑ 𝑝(𝑥|𝑛)

5

𝑥=−5

log(𝑝(𝑥|𝑛)) = −𝐸(log 𝑝(𝑋|𝑛))

The maximum entropy distribution is, to some extent, the noise distribution that removes the

most information about the original value 𝑛 under the given conditions.

In order to support the user's interpretation of the uncertainty that the noise infliction entails,

we present the exact noise distributions that conditions 1-3 and 5-6 generate for different

values of 𝑛 in table C1. Based on table C1, we derive confidence distributions for 𝑛 given 𝑌 in

tables C2 and C3. A confidence distribution is in itself a stochastic size that depends on the

observed value of 𝑌 and not a probability distribution for 𝑛. (And here the confidence has

nothing to do with confidentiality.)

𝑝(𝑥) 𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8 𝑛 = 9 𝑛 >= 10

𝑥 = −5 0,0000 0,0000 0,0000 0,0000 0,0000 0,2987 0,0000 0,0000 0,0000 0,0000 0,0909

𝑥 = −4 0,0000 0,0000 0,0000 0,0000 0,3988 0,0000 0,0000 0,0000 0,0000 0,1296 0,0909

𝑥 = −3 0,0000 0,0000 0,0000 0,5175 0,0000 0,0000 0,0000 0,0000 0,1908 0,1219 0,0909

𝑥 = −2 0,0000 0,0000 0,6555 0,0000 0,0000 0,0000 0,0000 0,2940 0,1634 0,1147 0,0909

𝑥 = −1 0,0000 0,8149 0,0000 0,0000 0,0000 0,0000 0,4880 0,2145 0,1400 0,1079 0,0909

𝑥 = 0 1,0000 0,0000 0,0000 0,0000 0,0000 0,1573 0,2522 0,1565 0,1199 0,1015 0,0909

𝑥 = 1 0,0000 0,0000 0,0000 0,0000 0,1657 0,1383 0,1303 0,1142 0,1027 0,0955 0,0909

𝑥 = 2 0,0000 0,0000 0,0000 0,1646 0,1390 0,1217 0,0674 0,0833 0,0880 0,0899 0,0909

𝑥 = 3 0,0000 0,0000 0,1499 0,1309 0,1166 0,1070 0,0348 0,0608 0,0754 0,0846 0,0909

𝑥 = 4 0,0000 0,1108 0,1116 0,1041 0,0978 0,0941 0,0180 0,0444 0,0645 0,0796 0,0909

𝑥 = 5 0,0000 0,0743 0,0830 0,0828 0,0821 0,0828 0,0093 0,0324 0,0553 0,0748 0,0909

Sum(𝑝(𝑥)) 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

𝐸(𝑋|𝑛) 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑉𝑎𝑟(𝑋|𝑛) 0,0000 4,4460 7,8320 10,2306 11,7688 12,6325 1,7215 3,9038 6,0585 8,0973 10,0000

ℇ(𝑝|𝑛) 0,0000 0,6038 1,0126 1,3459 1,6219 1,8497 1,3775 1,8547 2,1210 2,2874 2,3979

Table C1 Noise probability distribution for different values of 𝑛.

 Combinations where 𝑌 = 𝑛 + 𝑋 < 0.

 Combinations where 1 ≤ 𝑌 = 𝑛 + 𝑋 ≤ 5

By summing the numbers in Table C1 that give the same value for y= 𝑥 + 𝑛 and dividing by the sum (standardize to sum equal to 1), table C2 is

derived. Table C2 indicates what we can call confidence levels for each value of 𝑛 given the value 𝑦 that microdata.no has returned for 𝑌. Since

we are looking at 𝑛 as a fixed number and not a stochastic variable, the confidence levels 𝑐𝑓(𝑛|𝑦) are not probabilities in the normal sense,

even if they sum up to 1.

For 𝑛 > 10 the noise distribution will be flat with 𝑝(𝑥) =
1

11
≈ 0,0909 for any 𝑥𝜖{−5, … , 5} as for 𝑛 = 10.

Note that in tables, the inner and the marginal cells will be noise inflicted independent of each other. Noise inflicted tables will therefore not

be additive. The noise variance of the marginal cells becomes the same as for inner cells, and less than the variance summed over the inner

cells.

𝑐𝑓(𝑛|𝑌 = 𝑦) 𝑌 = 0 𝑌 = 5 𝑌 = 6 𝑌 = 7 𝑌 = 8 𝑌 = 9 𝑌 = 10 𝑌 = 11 𝑌 = 12 𝑌 = 13 𝑌 = 14 𝑌 = 15

𝑛 = 0 0,2713 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 1 0,2211 0,0571 0,0486 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 2 0,1779 0,0772 0,0730 0,0670 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 3 0,1404 0,0848 0,0857 0,0840 0,0781 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 4 0,1082 0,0853 0,0910 0,0941 0,0922 0,0861 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 5 0,0810 0,0810 0,0905 0,0982 0,1009 0,0988 0,0930 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 6 0,0000 0,2513 0,1650 0,1051 0,0635 0,0365 0,0202 0,0109 0,0000 0,0000 0,0000 0,0000

𝑛 = 7 0,0000 0,1514 0,1404 0,1262 0,1077 0,0874 0,0683 0,0519 0,0356 0,0000 0,0000 0,0000

𝑛 = 8 0,0000 0,0983 0,1070 0,1129 0,1130 0,1078 0,0988 0,0881 0,0710 0,0580 0,0000 0,0000

𝑛 = 9 0,0000 0,0667 0,0798 0,0925 0,1017 0,1065 0,1073 0,1051 0,0930 0,0835 0,0761 0,0000

𝑛 = 10 0,0000 0,0468 0,0595 0,0733 0,0857 0,0954 0,1021 0,1063 0,1000 0,0954 0,0924 0,0909

𝑛 = 11 0,0000 0,0000 0,0595 0,0733 0,0857 0,0954 0,1021 0,1063 0,1000 0,0954 0,0924 0,0909

𝑛 = 12 0,0000 0,0000 0,0000 0,0733 0,0857 0,0954 0,1021 0,1063 0,1000 0,0954 0,0924 0,0909

𝑛 = 13 0,0000 0,0000 0,0000 0,0000 0,0857 0,0954 0,1021 0,1063 0,1000 0,0954 0,0924 0,0909

𝑛 = 14 0,0000 0,0000 0,0000 0,0000 0,0000 0,0954 0,1021 0,1063 0,1000 0,0954 0,0924 0,0909

𝑛 = 15 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1021 0,1063 0,1000 0,0954 0,0924 0,0909

𝑛 = 16 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1063 0,1000 0,0954 0,0924 0,0909

𝑛 = 17 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1000 0,0954 0,0924 0,0909

𝑛 = 18 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0954 0,0924 0,0909

𝑛 = 19 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0924 0,0909

𝑛 = 20 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0909

Sum 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

Table C2 Confidence distribution of 𝑛 for different values of 𝑦. Positive confidence levels are represented by bold font.

𝐶𝐷(𝑛|𝑦) in table C3 are cumulative aggregations of the confidence levels from table C2 defined as

𝐶𝐷(𝑛|𝑦) = ∑ 𝑐𝑑(𝑗|𝑦)𝑛
𝑗=0

𝐶𝐷(𝑛|𝑦) 𝑌 = 0 𝑌 = 5 𝑌 = 6 𝑌 = 7 𝑌 = 8 𝑌 = 9 𝑌 = 10 𝑌 = 11 𝑌 = 12 𝑌 = 13 𝑌 = 14 𝑌 = 15

𝑛 = 0 0,2713 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 1 0,4924 0,0571 0,0486 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 2 0,6703 0,1343 0,1217 0,0670 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 3 0,8107 0,2190 0,2073 0,1510 0,0781 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 4 0,9190 0,3044 0,2983 0,2450 0,1703 0,0861 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 5 1,0000 0,3854 0,3888 0,3432 0,2712 0,1849 0,0930 0,0000 0,0000 0,0000 0,0000 0,0000

𝑛 = 6 1,0000 0,6367 0,5539 0,4483 0,3347 0,2214 0,1132 0,0109 0,0000 0,0000 0,0000 0,0000

𝑛 = 7 1,0000 0,7882 0,6943 0,5746 0,4424 0,3088 0,1815 0,0627 0,0356 0,0000 0,0000 0,0000

𝑛 = 8 1,0000 0,8864 0,8012 0,6875 0,5554 0,4166 0,2802 0,1508 0,1066 0,0580 0,0000 0,0000

𝑛 = 9 1,0000 0,9532 0,8810 0,7800 0,6572 0,5231 0,3875 0,2559 0,1997 0,1415 0,0761 0,0000

𝑛 = 10 1,0000 1,0000 0,9405 0,8533 0,7429 0,6185 0,4896 0,3622 0,2997 0,2369 0,1685 0,0909

𝑛 = 11 1,0000 1,0000 1,0000 0,9267 0,8286 0,7139 0,5917 0,4685 0,3998 0,3323 0,2609 0,1818

𝑛 = 12 1,0000 1,0000 1,0000 1,0000 0,9143 0,8092 0,6938 0,5748 0,4998 0,4277 0,3532 0,2727

𝑛 = 13 1,0000 1,0000 1,0000 1,0000 1,0000 0,9046 0,7958 0,6811 0,5998 0,5230 0,4456 0,3636

𝑛 = 14 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,8979 0,7874 0,6999 0,6184 0,5380 0,4545

𝑛 = 15 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,8937 0,7999 0,7138 0,6304 0,5455

𝑛 = 16 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9000 0,8092 0,7228 0,6364

𝑛 = 17 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9046 0,8152 0,7273

𝑛 = 18 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9076 0,8182

𝑛 = 19 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9091

𝑛 = 20 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

Table C3 Cumulative confidence distribution for different values of 𝑦.

Let {5 − 9} denote the set of values {5,6,7,8,9}. The confidence level of the values {5 − 9} if observing for example 𝑌 = 7 then becomes

𝑐𝑑({5 − 9}|𝑌 = 7) = 𝐶𝐷(9|𝑌 = 7) − 𝐶𝐷(4|𝑌 = 7) = 0,7800 − 0,2450 = 0,5350

This corresponds to a confidence interval. Note again that it is not the same as probabilities since 𝑛 is not stochastic.

If 𝑌 > 15, the confidence distribution 𝑐𝑑(𝑦|𝑛) in table C2 will be flat and equal to
1

11
≈ 0,0909

for all values of 𝑛 from 𝑌 − 5 to 𝑌 + 5, as for 𝑌 = 15. Let 𝑎 and 𝑏 be integer numbers where

𝑏 > 𝑎. Suppose that 𝑌 = 𝑦 ≥ 15. Then,

𝑐𝑑({𝑎 − 𝑏}|𝑦) = 𝐶𝐷(𝑏|𝑦) − 𝐶𝐷(𝑎|𝑦) = (min(𝑏, 𝑦 + 5) − max(𝑎, 𝑦 − 5))/11

Example: Let 𝑎 = 37, 𝑏 = 44 and 𝑦 = 39. Then,

𝑐𝑑({37 − 44}) =
min(44,44)−max(37,34)

11
=

44−37

11
=

7

11
≈ 0,6364.

When aggregating numerical sizes, for example in table cells, the sums will be adjusted in

relation to the noise added.

Let 𝑍𝑖 be the value of a numerical variable (such as an income variable) for person number 𝑖,

and 𝑇𝑐 the original sum of this variable in a cell 𝑐 of 𝑛𝑐 persons, that is

𝑇𝑐 = ∑ 𝑍𝑖𝑖𝜖𝑐 ,

Suppose 𝑛𝑐 is noise-added into 𝑌𝑐. Then 𝑇𝑐 will be adjusted to

𝑇𝑐
∗ =

𝑌𝑐

𝑛𝑐
𝑇𝑐

This adjustment can be dramatic for cells with few observations but will have less importance

in cells with many observations. This is however the intention. Also note that

�̅�𝑐 =
𝑇𝑐

∗

𝑌𝑐
=

𝑇𝑐

𝑛𝑐

So the average is not affected, except if 𝑌𝑐 = 0. Then �̅�𝑐 = 𝑁𝑎𝑁.

If 𝑌𝑐 ≤ 9, also standard deviation, median and quartiles, which can be generated by the

summarize-option in tabulate, will be set to 𝑁𝑎𝑁.

Measure 4: Graphic plots - Hexbin plots

It is common to use scatterplot diagrams to establish a visual image of data or to show the

relationship between numerical variables. Such plots can be very revealing, especially if

there are few observations in relation to the graphical area or in areas outside the main mass

of points. If, for a given unit/person in the population, the value of one of the variables that

span out the plot is known, it will often be possible to read the value of the second variable

with too much accuracy.

To prevent this from happening, we have in microdata.no chosen to smooth such plots with a

smoothing technique. For this purpose, we have attempted to focus on a technique called

hexbin plot. In a hexbin plot, the graphic area is divided into regular hexagons.

Example of hexbin plot made in microdata.no:

Figure C1. Hexbin plot showing total income in 2009 vs. 2010 for a small population

In a hexbin plot, the graphical area is scaled based on the largest and smallest values that

occur for the variables being plotted. The largest and smallest values are influenced by the

winsorisation referred to in measure 2. The hexagons are given a color or hue indicating an

interval for how many units there are in them, for example 30-59, 60-89, etc. The range of

units/ persons each hue represent are equally long and are automatically adjusted according

to the distribution in the data.

Hexbin plot is under trial. In the current version, all hexagons where the number of people is

less than 20% of the most populated hexagon form are blanked. This criterion will be

adjusted as soon as it is possible to give priority. Note that the winsorisation of the numerical

variables that span the plot will affect the plot.

Measure 5: Hiding tables with too many low values

Tables created by the tabulate command may in some cases contain many cells with low

values for the number of units. This can be problematic as it makes it easier to indirectly

identify individuals by studying combinations of values for the categorical variables that make

up a table. Another problem with such tables is that the noise generation described under

«Measure 3» gives a relatively high uncertainty for the relevant cell values (the percentage

noise becomes relatively large with small numbers), so that the statistical usefulness of the

table is low.

In microdata.no, a limit value of 50% is operated, i.e. tables where more than 50% of the

cells contain frequency values lower than 5 will be stopped. In addition, an error message

about this will be displayed.

It is possible to avoid the problem of tables being stopped due to many low cell values: By

making coarser divisions for the categorical variables that make up the table, or by

increasing the size of the table population, you will be able to increase the number of units in

each cell and thus fall below the 50% limit so that the table is approved and displayed.

